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Abstract—Polychronous groups are unique temporal patterns
of neural activity that exist implicitly within non-linear, recur-
rently connected networks. Through Hebbian based learning
these groups can be strengthened to give rise to larger chains
of spatiotemporal activity. Compared to other structures such as
Synfire chains, they have demonstrated the potential of a much
larger capacity for memory or computation within spiking neural
networks. Polychronous groups are believed to relate to the input
signals under which they emerge.

Here we investigate the quantity of groups that emerge from
increasing numbers of repeating input patterns, whilst also
comparing the differences between two plasticity rules and two
network connectivities. We find – perhaps counter-intuitively
– that fewer groups are formed as the number of repeating
input patterns increases. Furthermore, we find that a tri-phasic
learning rule gives rise to fewer groups than the ’classical’ double
decaying exponential STDP plasticity window. It is also found
that a scale-free network structure produces a similar quantity,
but generally smaller groups than a randomly connected Erd̈os-
Rényi structure.
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I. I NTRODUCTION

Hebb proposes [1] that cognitive processing was mediated
by synaptic plasticity encoding patterns of stimulation in
neural networks which could subsequently be re-activated by
internal cues. Formally described neuro-plasticity rules, now
known as spike-timing dependent plasticity (STDP), express
that causal correlations in pre- and post- synaptic activity are
potentiated, while a-causal correlations are depressed [2], [3],
[4].

Hebb’s enduring work led to the study of transient, dynamic
patterns of activity and to the definition of neural structures
that could underpin them. Abeles [5], describes ’synfire chains’
as pools of neurons activating synchronously between con-
nections of fairly equal delays. Bienenstock [6] modifies this
concept by suggesting that the delays between each pool do
not need to be the same and that a chain can still propagate
without the pools activating coherently.

Polychronous groups (PGs) were introduced by Izhikevich
[7] as an alternative to viewing spiking computation as syn-
chronously activating chains of neurons. Given a specific
input, a time-locked but crucially – temporal – response can
be reproduced when a given PG ’fires’. The advantage this
provides is that the same neurons could easily be part of a
huge multitude of different groups, drastically increasing the
potential capacity of even small networks well beyond their
size in terms of the number of synapses.

Izhikevich [7] observes the capacity of a network to support
PGs by providing continuous Poissonian input to randomly
selected neurons. Thousands of PGs are observed to arise, but
due to the unstructured input, the groups capacity to internalize
responses to fixed input patterns is unclear.

Here, we investigate the capacity for PGs when given a
number of fixed spatiotemporal input patterns repeated over
the course of the simulation. We do this by presenting increas-
ing numbers of inputs to a recurrently connected network of
Izhikevich neurons [8] and monitoring the number of groups
generated as a result.

As well as the number of inputs playing a role in the
PGs formed, the synaptic plasticity rule is central too. Here
we choose to compare two types of learning windows; the
’classical’ double decaying exponential rule used previously
by Izhikevich [7] and a tri-phasic rule observed in CA3-CA1
hippocampal synapses [4].

In his simulations pertaining to PGs [7], Izhikevich forms
the connections between neurons randomly and independently
of existing connections, giving rise to an Erdös-Ŕenyi struc-
tured network. We compare this to a scale-free topology
that has been widely adopted within the field of reservoir
computing [9].

II. M ETHODS

A. Network

A network of 1000 Izhikevich neurons [8] is randomly
connected with a probability of any two neurons being con-
nected as 0.1. The ratio of excitatory to inhibitory neurons
is 4:1. Excitatory weights are initialized as 6.0 and inhibitory



weights as -5.0. The maximum weight value is 10.0. Excitatory
delays are randomly drawn from a uniform distribution up to
20ms while inhibitory delays are set at 1ms. The simulation
timestep is 1ms. Synaptic transmission occurs as a single
impulse lasting 1ms.

B. Connectivities

Two widely known connectivity graph types are used:
Erdös-Ŕenyi graph is the simplest – to add an edge, nodes

are selected at random. Each new edge is added independently
to all pre-existing ones.

Scale-Free graph is more structured around ’hubs’ of highly
connected areas. To add an edge, the probability of selecting
a node as a source is proportional to its out-degree while the
target neurons are selected without bias to help maintain full
network utilization.

C. Plasticity Rules

Weight changes are calculated every 1ms, but accumulated
for 1s and then applied. Synaptic plasticity is governed ac-
cording to STDP and the learning windows described in 1.
Only excitatory connections undergo learning, with inhibitory
weights remaining fixed at their initial values. The minimum
weight is 0 for excitatory neurons. A nearest-neighbor STDP
approach is taken with only the most recent spikes being
considered to calculate the weight change [10].

Classic STDP is depicted in graph 1a. as the familiar dou-
ble decaying exponential with Long Term Depression (LTD,
negative) and Long Term Potentiation (LTP, positive) sections
divided by a discontinuity. This rule has been observed in
both the neocortex and cerebellum as well as other areas of
the brain [2], [3], [4]. For the classic STDP rule we use the
following equation:

∆W (t) =

{

A+ · e−∆t/τ+ if t > 0

A
−
· e∆t/τ

− if t ≤ 0

with the paramters:A+ = 0.1, A
−

= -0.12, τ+ and τ
−

are
20.0, that match Izhikevich’s STDP model.

Tri-phasic Rule is a continuous function as depicted in graph
1b. It was introduced to match synaptic strength changes as
observed between the CA3 and CA1 areas of the hippocampus
[4]. The tri-phasic plasticity rule that we use is shown by:

A+ · e
−(x−15)2/τ+ − A

−
· e

−(x−20)2/τ
−

with the paramters:A+ = 0.23,A
−

= 0.15, τ+ = 200, and
τ
−

= 2000. These values were chosen to match the ’classical’
STDP rule in: the total duration of the learning window, the
area of integration under the curves and therefore the overall
levels of LTP and LTD.

D. Input Patterns

The idea when generating the input patterns is that they
should all follow the same distribution of spikes and average
rate while differing only in the precise spike timing. This is
because polychronous groups are sensitive to precise timings

and we can rule out variation in the number of groups due
to changes in the input rate – only the number of different
patterns presented counts. Input patterns are provided as
pre-calculated Poisson spike trains with a 10Hz rate and a
minimum 5ms Inter-Spike-Interval left after each spike. Each
pattern consists of 100 spike trains fed to 100 pre-selected
neurons chosen at the beginning of the simulation. Each
pattern lasts a whole second and is applied from the beginning
of a second. A set of 1, 2, 4 or 8 patterns are repeatedly
alternated throughout the duration of the simulation.

E. PG Detection

In [7], Izhikevich outlines a definition of what constitues a
polychronous group and its main characteristics. It is thisthat
we base our detection process on. The key idea is that for a
given excitatory neuron (root), any triplet of pre-neuronswith
strong connections (anchors) may be the beginning of a long
chain of propagation. There are two factors that determine
whether a group will then arise. Firstly, the anchors should
fire at times such that the spike events reach the root at the
same time, thus causing a new spike. Secondly, there should
be further strong connections from the anchors and the root
to more neurons that can continue to propagate spikes.

In order to detect all the neurons that form a group, a
simulation approach is taken. For each set of anchors that
are stimulated at the appropriate times, the whole network
is simulated to allow other neurons to fire. This simulation
must be started on an otherwise silent network (one with
no other activity) so that we can tell that all of the spikes
that occurred were a result of the original anchors firing. The
resultant propagation of spikes forms a potential group. Small
groups are discounted from the detection procedure. The path
length of a group is the longest chain of connections from the
first to last firing. For the purpose of ignoring tiny groups, this
path length should be at least seven links long for a group to
be considered. On the other hand, because the simulation time
is limited to 150 milliseconds for performance reasons, larger
groups could be truncated - still counted, but not registered as
their full size.

Figure 2 illustrates a minimal PG with longest path length
equal to seven, and with each anchor neuron contributing to
at least two spikes.

III. R ESULTS

A. Effect of the Number of Input Patterns on Group Emergence

It may be expected that the more input patterns presented
to the network, the more groups are reinforced and detected
over time. Actually the opposite was observed.

From the averaged results of ten independent runs, Figure
3 shows starkly that as the number of presented input pat-
terns doubles, the resultant number of groups formed roughly
halves.

We suggest that the cause for this is due to each pattern
re-reinforcing a specific set of connections throughout the
majority of the network, thus forming groups. At the same
time, different patterns undermine each others groups by



Fig. 1. The two plasticity rules used in our simulations. Graph a. shows the classical double decaying exponential STDP rule. Graph b. shows a more
recently discovered tri-phasic rule.

Fig. 2. Illustration of a minimal polychronous group. The anchor neurons are labeled with ’A’ and the root neuron with ’R’. Bold connections highlight a
longest path length for this group that happens to be seven links long. Each anchor neuron connects to the root and at leastone other neuron.

causing a recently strengthened set of connections to fire out-
of-order in relation to how a previously presented pattern had
caused. This could be an example of competition between the
inputs leading to a forgetting effect similar to the one observed
in [11].

The key point is that each pattern presented to the network
causes specific temporal activity throughout most of the net-
work meaning that with just one input, most of the connections
will undergo learning relevant to that input, forming groups
throughout as a response.

In this light, any further pattern presented afterwards is
only likely to disrupt the previously formed groups while
strengthening new ones. Contention over the synapses is
evident amongst different inputs - the more inputs, the greater
the contention, the fewer groups can ultimately form. To view
things in a selectionist way: perhaps only the strongest groups
(enforced by any given pattern) can survive.

B. Effect of the Plasticity Rule on Group Emergence

Clearly, from a comparison between the two plasticity rules
in Figure 3(a) and 3(b), the decaying exponential STDP gives
rise to a much larger number of groups than the tri-phasic
STDP - about eight times as many.

The big difference is probably due to the consistency of
the caused weight changes. With the traditional rule, thereare
only two modes of change: early and late. If a spike arrives
early before a firing is caused, efficacy is strengthened; andif

it arrives late it is weakened. This means that regardless ofthe
delay, as long as connected neurons always fire in the same
order, the weight change will be in a consistent direction.

On the other hand, the tri-phasic rule has three modes; early,
late and on-time. Only on-time delivery will increase synaptic
efficacy here, therefore even if connected neurons mostly fire
in the same order, the difference of how early or late they are
could cause opposing weight change.

In a similar way to the high contention caused by a larger
number of input patterns, a more stringent criterion provided
by the tri-phasic rule may lead to a more challenging selection
process for polychronous groups.

Rather than being a disadvantage in terms of reduction
in capacity, the emphasis on selection of the fittest groups
for each pattern may present advantages when viewing the
neural microcircuit less as a storage vessel, and more like a
selectional system, refer to Edelman [12].

C. Effect of Network Connectivity on Group Emergence

It is found that switching the network graph type from
Erdös-Ŕenyi to Scale-Free does not have a significant effect on
the number of groups detected, but it does reduce the average
size. This is evident by comparing the histograms: Figure 4(a)
and Figure 4(b) – group size distributions from Erdös-Ŕenyi
and Scale-Free graphs, respectively. For each histogram, 2000
groups were sampled over the duration of the simulation.

Due to the Erd̈os-Ŕenyi connectivity model being more



Fig. 3. Emergence of groups over a 5,000 second time period while being stimulated by; 1, 2, 4 or 8 alternating patterns. Snapshots of numbers of groups
within the network are taken at 250 second intervals. a) shows the simulation subject to the ’classical’, decaying exponential STDP rule. b) shows the
simulation subject to the CA1 type, tri-phasic STDP rule. Tensimulation runs were performed for each set of results and averaged to produce the two graphs.
Error bars are shown as 3x SD of each sampling point.

inclusive of any neurons than the Scale-Free model, it is
not surprising that for a given stimulus, a larger portion of
the networks neurons would fire. However, as PGs are based
on unique combinations of strong pre-synapses – and both
connectivity models are allowed the same number of synapses,
governed by the same plasticity rules – the total number of
PGs is fairly even between them.

The difference can be summarized as larger, more spread
out PGs for Erd̈os-Ŕenyi graphs and smaller, more localized
PGs for Scale-Free graphs. When it comes to the wider utility
of polychronous groups, it is not clear which of size or
localization is more desirable.
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Fig. 4. Histograms of group sizes from 2000 samples of each network structure:a. – Erd̈os-Ŕenyi. b. – Scale-Free.

IV. D ISCUSSION OFRELATED WORK

A. Other Definitions of PGs

In [13], Martinez and Paugam-Moisy provide a clearer and
perhaps a more general definition of a PG than has been given
previously. A PG consists of a temporal chain of potential
activation, not just the neurons that constitute the group.The
propagation of activity is started by a small number,s, of
spikes from triggering neurons arriving close enough together
in time to cause further spikes.

Three types of group are distinguished:
Supported PGs : Based soley on the network topol-
ogy.
Adapted PGs : Synaptic weights and neuron mem-
brane model are also considered.
Activated PGs : Groups that are actually observed to
occur.

In our analysis of PG capacity, we are detecting Adapted
PGs as they are the groups directly subject to change under
STDP learning rules.

B. PGs Analysed in Learning Task

In [14], Paugam-Moisy and Martinez use PGs to help
analyse the separability of their network on a two class
classification problem.

Due to fairly low network connectivity, only 104 supported
PGs existed in total. STDP is the only adaptation process
within the network (delay learning rule being applied to chosen
outputs).

Activated PGs were detected during both learning and
testing phases and analysed in order to ascertain the specificity
of PGs to the two classes in a classification problem. Small
subsets of PGs are observed specific to each of the two
patterns. Also, the most frequently activated groups in the
testing phase are also the ones observed during the learning
phase. This supports the idea that the groups are representative
of the two encoded classes.

V. CONCLUSION

The results have shown how the PG capacity of a network
is reduced when the number of inputs given increases. This
may not be a problem in the trials that we performed as a
significant number of PGs still did form.

Although the tri-phasic rule generates fewer PGs than the
’classical’ STDP rule, the smaller error bars in Figure 3a over
Figure 3b show them to be significantly more stable. The
variance between the ten simulation runs being up to ten times
greater in Figure 3a than in Figure 3b. This could indicate an
interesting trade-off between capacity and stability in the areas
of the brain which use different plasticity rules. Brain functions
that require a larger number of responses for short term use
may favour the ’classical’ rule, while functions that require
fewer responses but with longer term stability may favour the
tri-phasic rule.

Further work could add strength to a number of conclusions:
Testing larger networks with weaker synapses could reduce

the competition between input patterns over the same connec-
tions. Given a large enough network, competition could be
reduced to the extent that increasing the number of spatiotem-
poral input patterns may not reduce the number of groups
formed - at least up to a certain limit.

Testing much larger numbers of input patterns would enable
us to see when the number of PGs that form dwindles to the
point that there are insufficient numbers of PGs to internalize
all of the inputs presented to the network. This would allow
stronger statements to be made on catastrophic forgetting in a
neural system based on PGs.

Analyzing the specificity of the input patterns to the PGs
that they activate would enable confirmation that particular
groups are uniquely internalizing the inputs. This would
demonstrate the level of seperability that the PGs provide and
also allow statements to be made on cross-talk in the responses
between the inputs rather than limiting the discussion to a more
general level of competition.

Analyzing group stability by scanning for individual groups



throughout the simulation period to determine persistence. In
terms of stability of group activation, some noise could be
added to each input pattern to discern each groups resilience
to noise.
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