
To appear in EPTCS.

A CSP account of Event-B refinement

Steve Schneider
Department of Computing, University of Surrey

S.Schneider@surrey.ac.uk

Helen Treharne
Department of Computing, University of Surrey

H.Treharne@surrey.ac.uk

Heike Wehrheim
Department of Computer Science, University of Paderborn

wehrheim@uni-paderborn.de

Event-B provides a flexible framework for stepwise system development via refinement. The frame-
work supports steps for (a) refining events (one-by-one), (b) splitting events (one-by-many), and (c)
introducing new events. In each of the steps events can moreover possibly be anticipated or conver-
gent. All such steps are accompanied with precise proof obligations. Still, it remains unclear what
the exact relationship - in terms of a behaviour-oriented semantics - between an Event-B machine
and its refinement is. In this paper, we give a CSP account of Event-B refinement, with a treatment
for the first time of splitting events and of anticipated events. To this end, we define a CSP seman-
tics for Event-B and show how the different forms of Event-B refinement can be captured as CSP
refinement.

1 Introduction

Event-B [1] provides a framework for system development through stepwise refinement. Individual
refinement steps are verified with respect to their proof obligations, and the transitivity of refinement
ensures that the final system description is a refinement of the initial one. The refinement process al-
lows new events to be introduced through the refinement process, in order to provide the more concrete
implementation details necessary as refinement proceeds.

The framework allows for a great deal of flexibility as to cover a broad range of system developments.
The recent book [1] comprising case studies from rather diverse areas shows that this goal is actually met.
The flexibility is a result of the different ways of dealing with events during refinement. At each step
existing events of an Event-B machine need to be refined. This can be achieved by (a) simply keeping
the event as is, (b) refining it into another event, possibly because of a change of the state variables, or
(c) splitting it into several events1. Furthermore, every refinement step allows for the introduction of new
events. To help reasoning about divergence, events are in addition classified as ordinary, anticipated or
convergent. Anticipated and convergent events both introduce new details into the machine specification.
Convergent events must not be executed forever, while for anticipated events this condition is deferred
to later refinement steps. All of these steps come with precise proof obligations; appropriate tool support
helps in discharging these [3, 2]. Event-B is essentially a state-based specification technique, and proof
obligations therefore reason about predicates on states.

Like Event-B, CSP comes with a notion of refinement. In order to understand their relationship,
these two refinement concepts need to be set in a single framework. Both formalisms moreover support
a variety of different forms of refinement: Event-B by means of several proof obligations related to
refinement, out of which the system designer chooses an appropriate set; CSP by means of its different

1A fourth option is merging of events which we do not consider here.

2 A CSP account of Event-B refinement

semantic domains of traces, failures and divergences. The aim of this paper is to give a precise account
of Event-B refinement in terms of CSP’s behaviour-oriented process refinement. This will also provide
the underlying results that support refinement in the combined formalism Event-B‖CSP. Our work is
thus in line with previous studies relating state-based with behaviour-oriented refinement (see e.g. [5,
9, 4]). It turns out that CSP supports an approach to refinement consistent with that of Event-B. It
faithfully reflects all of Event-B’s possibilities for refinement, including splitting events and new events.
It moreover also deals with the Event-B approach of anticipated events as a means to defer consideration
of divergence-freedom. Our results involves support for individual refinement steps as well as for the
resulting refinement chain.

The paper is structured as follows. The next section introduces the necessary background on Event-B
and CSP. Section 3 gives the CSP semantics for Event-B based on weakest preconditions. In Section 4
we precisely fix the notion of refinement used in this paper, both for CSP and for Event-B, and Section
5 will then set these definitions in relation. It turns out that the appropriate refinement concept of CSP in
this combination with Event-B is infinite-traces-divergences refinement. The last section concludes.

2 Background

We start with a short introduction to CSP and Event-B. For more detailed information see [17] and [1]
respectively.

2.1 CSP

CSP, Communicating Sequential Processes, introduced by Hoare [11] is a formal specification language
aiming at the description of communicating processes. A process is characterised by the events it can
engage in and their ordering. Events will in the following be denoted by a1,a2, . . . or evt0,evt1,
Process expressions are built out of events using a number of composition operators. In this paper, we
will make use of just three of them: interleaving (P1 ||| P2), executing two processes in parallel without
any synchronisation; hiding (P \ N), making a set N of events internal; and renaming (f (P) and f−1(P)),
changing the names of events according to a renaming function f . If f is a non-injective function, f−1(P)
will offer a choice of events b such that f (b) = a whenever P offers event a.

Every CSP process P has an alphabet αP. Its semantics is given using the Failures/Divergences/Infinite
Traces semantic model for CSP. This is presented as U in [16] or FDI in [17]. The semantics of a process
can be understood in terms of four sets, T,F,D, I, which are respectively the traces, failures, divergences,
and infinite traces of P. These are understood as observations of possible executions of the process P, in
terms of the events from αP that it can engage in.

Traces are finite sequences of events from P’s alphabet: tr ∈ αP∗. The set traces(P) represents the
possible finite sequences of events that P can perform. Failures will not be considered in this paper and
are therefore not explained here.

Divergences are finite sequences of events on which the process might diverge: perform an infinite
sequence of internal events (such as an infinite loop) at some point during or at the end of the sequence.
The set divergences(P) is the set of all possible divergences for P. Infinite traces u ∈ αPω are infinite
sequences of events. The set infinites(P) is the set of infinite traces that P can exhibit. For technical
reasons it also contains those infinite traces which have some prefix which is a divergence.

Definition 2.1 A process P is divergence-free if divergences(P) = {}.

S.Schneider, H. Treharne & H. Wehrheim 3

machine M0
variables v
invariant I(v)
events init0,evt0, . . .
end

evt0 =̂
when

G(v)
then

v :| BA0(v,v′)
end

Figure 1: Template of an Event-B machine and an event.

We use tr to refer to finite traces. These can also be written explicitly as 〈a1,a2, . . . ,an〉. The empty trace
is 〈〉, concatenation of traces is written as tr1

a tr2. We use u to refer to infinite traces. Given a set of
events A, the projections tr � A and u � A are the traces restricted to only those events in A. Note that u � A
might be finite, if only finitely many A events appear in u. Conversely, tr \ A and u \ A are those traces
with the events in A removed. The length operator #tr and #u gives the length of the trace it is applied
to. As a first observation, we get the following.

Lemma 2.2 If P is divergence-free, and for any infinite trace u of P we have #(u \ A) = ∞, then P \ A is
divergence-free.

Proof 2.3 Follows immediately from the semantics of the hiding operator.

Later, we furthermore use specifications on traces or, more generally, on CSP processes. Specifications
are given in terms of predicates. If S is a predicate on a particular semantic element, then we write P sat S
to denote that all relevant elements in the semantics of P meet the predicate S. For example, if S(u) is a
predicate on infinite traces, then P sat S(u) is equivalent to ∀u ∈ infinites(P) .S(u).

2.2 Event-B

Event-B [1, 13] is a state-based specification formalism based on set theory. Here we describe the basic
parts of an Event-B machine required for this paper; a full description of the formalism can be found in
[1].

A machine specification usually defines a list of variables, given as v. Event-B also in general allows
sets s and constants c. However, for our purposes the treatment of elements such as sets and constants
are independent of the results of this paper, and so we will not include them here. However, they can be
directly incorporated without affecting our results.

There are many clauses that may appear in Event-B machines, and we concentrate on those clauses
concerned with the state. We will therefore describe a machine M0 with a list of state variables v, a state
invariant I(v), and a set of events evt0, . . . to update the state (see left of Fig.1). Initialisation is a special
event init0.

A machine M0 will have various proof obligations on it. These include consistency obligations, that
events preserve the invariant. They can also include (optional) deadlock-freeness obligations: that at
least one event guard is always true.

Central to an Event-B description is the definition of the events, each consisting of a guard G(v)
over the variables, and a body, usually written as an assignment S on the variables. The body defines
a before-after predicate BA(v,v′) describing changes of variables upon event execution, in terms of the
relationship between the variable values before (v) and after (v′). The body can also be written as v :|

4 A CSP account of Event-B refinement

BA(v,v′), whose execution assigns to v any value v′ which makes the predicate BA(v,v′) true (see right
of Fig. 1).

3 CSP semantics for Event-B machine

Event-B machines are particular instances of action systems, so Morgan’s CSP semantics for action sys-
tems [14] allows traces, failures, and divergences to be defined for Event-B machines, in terms of the
sequences of events that they can and cannot engage in. Butler’s extension to handle unbounded non-
determinism [6] defines the infinite traces for action systems. These together give a way of considering
Event-B machines as CSP processes, and treating them within the CSP semantic framework. In this
paper we use the infinite traces model in order to give a proper treatment of divergence under hiding.
This is required to establish our main result concerning divergence-freedom under hiding of new events.
Consideration of finite traces alone is not sufficient for this result.

Note that the notion of traces for machines is different to that presented in [1], where traces are
considered as sequences of states rather than our treatment of traces as sequences of events.

The CSP semantics is based on the weakest precondition semantics of events. Let S be a statement
(of an event). Then [S]R denotes the weakest precondition for statement S to establish postcondition R.
Weakest preconditions for events of the form “ when G(v) then S(v) end” are given by considering
them as guarded commands:

[when G(v) then S(v) end]P = G(v)⇒ [S(v)]P

Events in the general form “ when G(v) then v :| BA(v,v′) end” have a weakest precondition semantics
as follows:

[when G(v) then v :| BA(v,v′) end]P = G(v)⇒∀x.(BA(v,x)⇒ P[x/v])

Observe that for the case P = true we have

[when G(v) then v :| BA(v,v′) end]true = true

Based on the weakest precondition, we can define the traces, divergences and infinite traces of an Event-B
machine2.

Traces The traces of a machine M are those sequences of events tr = 〈a1, . . . ,an〉 which are possible for
M (after initialisation init): those that do not establish false:

traces(M) = {tr | ¬[init;tr]false}

Here, the weakest precondition on a sequence of events is the weakest precondition of the sequen-
tial composition of those events: [〈a1, . . . ,an〉]P is given as [a1; . . . ; an]P = [a1](. . .([an]P) . . .).

Divergences A sequence of events tr is a divergence if the sequence of events is not guaranteed to
terminate, i.e. ¬[init; tr]true. Thus

divergences(M) = {tr | ¬[init;tr]true}

Note that any Event-B machine M with events of the form evt given above is divergence-free.
This is because [evt]true = true for such events (and for init), and so [init; tr]true = true. Thus no
potential divergence tr meets the condition ¬[init; tr]true.

2Failures can be defined as well but are omitted since they are not needed for our approach.

S.Schneider, H. Treharne & H. Wehrheim 5

Infinite Traces The technical definition of infinite traces is given in [6], in terms of least fixed points of
predicate transformers on infinite vectors of predicates. Informally, an infinite sequence of events
u = 〈u0,u1, . . .〉 is an infinite trace of M if there is an infinite sequence of predicates Pi such that
¬[init](¬P0) (i.e. some execution of init reaches a state where P0 holds), and Pi⇒¬[ui](¬Pi+1)
for each i (i.e. if Pi holds then some execution of ui can reach a state where Pi+1 holds).

infinites(M) = {u | there is a sequence〈Pi〉i∈N . ¬[init](¬P0) ∧
for all i . Pi⇒¬[ui](¬Pi+1) }

These definitions give the CSP Traces/Divergences/Infinite Traces semantics of Event-B machines in
terms of the weakest precondition semantics of events.

4 Refinement

In this paper, we intend to give a CSP account of Event-B refinement. The previous section provides us
with a technique for relating Event-B machines to the semantic domain of CSP processes. Next, we will
briefly rephrase the refinement concepts in CSP and Event-B before explaining Event-B refinement in
terms of CSP refinement.

4.1 CSP refinement

Based on the semantic domains of traces, failures, divergences and infinite traces, different forms of
refinement can be given for CSP. The basic idea underlying these concepts is - however - always the
same: the refining process should not exhibit a behaviour which was not possible in the refined process.
The different semantic domains then supply us with different forms of “behaviour”. In this paper we will
use the following refinement relation, based on traces and divergences:

PvTDI Q =̂ traces(Q)⊆ traces(P)
∧ divergences(Q)⊆ divergences(P)
∧ infinites(Q)⊆ infinites(P)

Refinement in Event-B also allows for the possibility of introducing new events. To capture this aspect in
CSP, we need a way of incorporating this into process refinement. As a first idea, we could hide the new
events in the refining process. This potentially introduces divergences, namely, when there is an infinite
sequence of new events in the infinite traces. In order to separate out consideration of divergence from
reasoning about traces, we will use P ||| RUNN as a lazy abstraction operator instead. RUNN defines a
divergence free process capable of executing any order of events from the set N. This will enable us to
characterise Event-B refinement introducing new events in CSP terms. The following lemma gives the
relationship between refinement involving interleaving, and refinement involving hiding.

Lemma 4.1 If P0 ||| RUNN vTDI P1 and N∩αP0 = {} and P1 \ N is divergence-free, then P0 vTDI P1 \
N.

Proof: Assume that (1) P0 ||| RUNN vTDI P1, (2) N ∩αP0 = {} and (3) P1 \ N is divergence-free. We
need to show that the (finite and infinite) traces as well as divergences of P1 \ N are contained in those
of P0.

6 A CSP account of Event-B refinement

evt0 =̂
when

G(v)
then

v :| BA0(v,v′)
end

evt1 =̂
refines evt0
status st
when

H(w)
then

w :| BA1(w,w′)
end

Figure 2: An event and its refinement

Traces Let tr ∈ traces(P1 \ N). By semantics of hiding there is some tr′ ∈ traces(P1) s.t. tr′ \ N = tr.
By (1) tr′ ∈ traces(P0 ||| RUNN). By (2) and the semantics of ||| we get tr′ \ N ∈ traces(P0) and
thus tr ∈ traces(P0).

Divergences By (3) divergences(P1 \ N) = {}, thus nothing to be proven here.

Infinites Let u ∈ infinites(P1 \ N). By the semantics of hiding there is some u′ ∈ infinites(P1) such that
u′ \ N = u and #(u′ \ N) = ∞. By (1) u′ ∈ infinites(P0 ||| RUNN) and by (2) and semantics of
interleave we get u′ \ N = u ∈ infinites(P0).

2

4.2 Event-B refinement

In Event-B, the (intended) refinement relationship between machines is directly written into the machine
definitions. As a consequence of writing a refining machine, a number of proof obligations come up.
Here, we assume a machine and its refinement to take the following form:

machine M0
variables v
invariant I(v)
events init0,evt0, . . .
end

machine M1
refines M0
variables w
invariant J(v,w)
events init1,evt1, . . .
variant V(w)
end

The machine M0 is actually refined by machine M1, written M0 4M1, if the given linking invariant J on
the variables of the two machines is established by their initialisations, and preserved by all events, in
the sense that any event of M1 can be matched by an event of M0 (or skip for newly introduced events)
to maintain J. This is the standard notion of downwards simulation data refinement [8]. We next look at
this in more detail, and in particular give the proof obligations associated to these conditions.

First of all, we need to look at events again. Figure 2 gives the shape of an event and its refinement.
We see that an event in the refinement now also gets a status. The status can be ordinary (also called
remaining), or anticipated or convergent. Convergent events are those which must not be executed
forever, and anticipated events are those that will be made convergent at some later refinement step.
New events must either have status anticipated or convergent. Both of these introduce further proof
obligations: to prevent execution “forever” the refining machine has to give a variant V (see above in

S.Schneider, H. Treharne & H. Wehrheim 7

M1), and V has to be decreased by every convergent event and must not be increased by anticipated
events.

We now describe each of the proof obligations in turn. We have simplified them from their form in
[13] by removing explicit references to sets and constants. Alternative forms of these proof obligations
are given in [1, Section 5.2: Proof Obligation Rules].

FIS REF: Feasibility Feasibility of an event is the property that, if the event is enabled (i.e. the guard
is true), then there is some after-state. In other words, the body of the event will not block when
the event is enabled.
The rule for feasibility of a concrete event is:

I(v) ∧ J(v,w) ∧ H(w)
`
∃w′.BA1(w,w′)

FIS REF

GRD REF: Guard Strengthening This requires that when a concrete event is enabled, then so is the
abstract one. The rule is:

I(v) ∧ J(v,w) ∧ H(w)
`

G(v)
GRD REF

INV REF: Simulation This ensures that the occurrence of events in the concrete machine can be
matched in the abstract one (including the initialization event). New events are treated as re-
finements of skip. The rule is:

I(v) ∧ J(v,w) ∧ H(w) ∧ BA1(w,w′)
`
∃v′.(BA0(v,v′) ∧ J(v′,w′))

INV REF

Event-B also allows a variety of further proof obligations for refinement, depending on what is appropri-
ate for the application. The two parts of the variant rule WFD REF below must hold respectively for all
convergent and anticipated events, including all newly-introduced events.

WFD REF: Variant This rule ensures that the proposed variant V satisfies the appropriate properties:
that it is a natural number, that it decreases on occurrence of any convergent event, and that it does
not increase on occurrence of any anticipated event:

I(v) ∧ J(v,w) ∧ H(w) ∧ BA1(w,w′)
`

V(w) ∈ N ∧ V(w′) < V(w)

WFD REF
(convergent event)

I(v) ∧ J(v,w) ∧ H(w) ∧ BA1(w,w′)
`

V(w) ∈ N ∧ V(w′)6 V(w)

WFD REF
(anticipated event)

8 A CSP account of Event-B refinement

We will use the refinement relation M04M1 to mean that the four proof obligations FIS REF, GRD REF,
INV REF, and WFD REF hold between abstract machine M0 and concrete machine M1.

5 Event-B refinement as CSP refinement

With these definitions in place, we can now look at our main issue, the characterisation of Event-B
refinement via CSP refinement. Here, we in particular need to look at the different forms of events in
Event-B during refinement. Events can have status convergent or anticipated, or might have no status.
This partitions the set of events of M into three sets: anticipated A, convergent C, and remaining events
R (neither anticipated nor convergent). The alphabet of M, the set of all possible events, is thus given by
αM = A∪C∪R. In the CSP refinement, these will take different roles.

Now consider an Event-B Machine M0 and its refinement M1: M0 4 M1. The machine M0 has
anticipated events A0, convergent events C0, and remaining events R0, and M1 similarly has event sets
A1, C1, and R1. Each event ev1 in M1 either refines a single event ev0 in M0 (indicated by the clause
‘refines ev0’ in the description of ev1) or does not refine any event of M0. The set of new events N1 is
those events which are not refinements of events in M0.

M04M1 thus induces a partial surjective function f1 : αM1 7→→αM0 where f1(ev1)= ev0⇔ ev1 refines ev0.
Observe that αM1 is partitioned by f−1

1 (αM0) and N1. The rules for refinement between events in Event-
B impose restrictions on these sets:

1. each event of M0 is refined by at least one event of M1;

2. each new event in M1 is either anticipated or convergent;

3. each event in M1 which refines an anticipated event of M0 is itself either convergent or anticipated;

4. refinements of convergent or remaining events of M0 are remaining in M1, i.e. they are not given a
status.

The conditions imposed by the rules are formalised as follows:
1. ran(f1) = A0∪C0∪R0;

2. N1 ⊆ A1∪C1;

3. f−1
1 (A0)⊆ A1∪C1;

4. f−1
1 (C0∪R0) = f−1

1 (C0)∪ f−1
1 (R0) = R1.

These relationships between the classes of events are illustrated in Figure 3.

5.1 New events

For the new events arising in the refinement, we can use the lazy abstraction operator via the RUN process
to get our desired result, disregarding the issue of divergence for a moment. The following lemma gives
our first result on the relationship between Event-B refinement and CSP refinement.

Lemma 5.1 If M0 4 M1 and the refinement introduces new events N1 and uses the mapping f1, then
f−1
1 (M0) ||| RUNN1 vTDI M1.

Proof: We assume state variables of M0 and M1 named as given above, i.e. state variables of M0 are v and
of M1 are w. Let tr = 〈a1, . . . ,an〉 ∈ traces(M1). We need to show that tr ∈ traces(f−1

1 (M0) ||| RUNN1).
First of all note that the interleaving operator merges the traces of two processes together, i.e., the traces of
f−1
1 (M0) ||| RUNN1 are simply those of f−1

1 (M0) with new events arbitrarily inserted. The proof proceeds
by induction on the length of the trace.

S.Schneider, H. Treharne & H. Wehrheim 9

R1

C1

A1

N1 C1
A1

f1
R0

C0

A0

N0 C0
A0

Figure 3: Relationship between events in a refinement step: f1 maps events in M1 to events in M0 that
they refine.

Induction base Assume n = 0, i.e., tr = 〈〉. By definition this means that the initialisation event init1 has
been executed bringing the machine M1 into a state w1. By INV REF (using init as event), we find
a state v1 such that J(v1,w1) and furthermore 〈〉 ∈ traces(M0) and hence also in traces(f−1

1 (M0) |||
RUNN1).

Induction step Assume that for a trace tr = 〈a1, . . . ,aj−1〉 ∈ traces(M1) we have already shown that tr ∈
traces(f−1

1 (M0) ||| RUNN1) and this has led us to a pair of states vj−1, wj−1 such that J(vj−1,wj−1).
Now two cases need to be considered:

1. aj /∈ N1: Assume aj in M1 to be of the form

when H(w) then w :| BA1(w,w′) end

and f1(aj) in M0 of the form

when G(v) then v :| BA(v,v′) end

Since aj is executed in wj−1 we have H(wj−1). By GRD REF we thus get G(vj−1). Further-
more, for wj with BA1(wj−1,wj) we find – by INV REF – a state vj such that J(vj,wj) and
BA(vj−1,vj). Hence tra 〈aj〉 ∈ traces(f−1

1 (M0) ||| RUNN1).
2. aj ∈ N1: Similar to the previous case. Here, aj refines skip and thus vj = vj−1 and the event aj

is coming from RUNN1 .
In the same way we can carry out a proof for infinite traces. For divergences it is even simpler as
divergences(M1) = {}. 2

This lemma can be generalised to a chain of refinement steps. For this, we assume that we are given a se-
quence of Event-B machines Mi with their associated processes Pi, and every refinement step introduces
some set of new events Ni.

10 A CSP account of Event-B refinement

Theorem 5.2 If a sequence of processes Pi, mappings fi, and sets Ni are such that

f−1
i+1(Pi) ||| RUNNi+1 vTDI Pi+1 (1)

for each i, then

f−1
n (. . .(f−1

1 (P0)) . . .) ||| RUNf−1
n (...f−1

2 (N1)...)∪...∪f−1
n (Nn−1)∪Nn

vTDI Pn

Proof: Two successive refinement steps combine to provide a relationship between P0 and P2 of the
same form as Line 1 above, as follows:

f−1
2 (P1) ||| RUNN2 vTDI P2 (given)

f−1
2 (f−1

1 (P0) ||| RUNN1) ||| RUNN2 vTDI P2 (line (1), transitivity of v)
f−1
2 (f−1

1 (P0)) ||| RUNf−1
2 (N1) ||| RUNN2 vTDI P2 (Law: f−1(P ||| Q) = f−1(P) ||| f−1(Q))

f−1
2 (f−1

1 (P0)) ||| RUNf−1
2 (N1)∪N2

vTDI P2 (Law: RUNA ||| RUNB = RUNA∪B)

Hence the whole chain of refinement steps can be collected together, yielding the result. 2

5.2 Convergent and anticipated events

The previous result lets us relate the first and last Event-B machine in a chain of refinements. Due to
the lazy abstraction operator (and the resulting possibility of defining refinement without hiding new
events), we considered divergence free processes there: all processes Pi representing Event-B machines,
are divergence free by definition. However, Event-B refinement is concerned with a particular form of
divergence and its avoidance. A sort of divergence would arise when new events (or more specifically,
convergent events) could be executed forever, and this is what the proof rules for variants rule out.

We would like to capture the impact of convergence and anticipated sets of events in the CSP seman-
tics as well. To do so, we first of all define the specification predicate

CA(C,R)(u) =̂ (#(u � C) = ∞⇒ #(u � R) = ∞)

Intuitively, this states that all infinite traces having infinitely many convergent (C) events also have in-
finitely many (R) remaining events (and thus cannot execute convergent events alone forever). In this
case we say that the Event-B machine does not diverge on C events.

Definition 5.3 Let M be an Event-B machine with its alphabet αM containing event sets C and R with
C∩R = {}. M does not diverge on C events if M sat CA(C,R).

Convergent events in Event-B machines only come into play during refinement. Thus a plain, single
Event-B machine has no convergent events (C = {}) and thus trivially satisfies the specification predicate.

Lemma 5.4 If M0 4 M1, and M1 has convergent, anticipated, and remaining events C1, A1, and R1
respectively, then M1 sat CA(C1,R1)

Proof: We prove this by contradiction. Assume¬M1 sat CA(C1,R1). Then there is some u∈ infinites(M1)
such that #(u � C1) = ∞ and #(u � R1) < ∞. Then there must be some tr0, u′ such that u = tr0

au′ with
u′ ∈ (C1∪A1)ω (i.e. tr0 is a prefix of u containing all the R1 events). Moreover, #u′ � C1 = ∞.

Now since M0 4 M1 we have by GRD REF and INV REF that there is some pair of states (v,w)
(abstract and concrete state) reached after executing tr0 for which J(v,w) and I(v) is true. Furthermore,

S.Schneider, H. Treharne & H. Wehrheim 11

V(w) is a natural number. Also by M0 4M1 we have an infinite sequence of pairs of states (vi,wi) (for
the remaining infinite trace u′) such that J(vi,wi). Since each event in u′ is in A1 or C1 we have from
WFD REF that V(wi+1) 6 V(wi) for each i. Further, for infinitely many i’s (i.e. those events in C1)
we have V(wi+1) < V(wi). Thus we have a sequence of values V(wi) decreasing infinitely often without
ever increasing. This contradicts the fact that the V(wi) ∈ N. 2

A number of further interesting properties can be deduced for the specification predicate CA.
Lemma 5.5 Let P be a CSP process and C,C′,R⊆ αP nonempty finite sets of events.

1. If P sat CA(C,R) then f−1(P) sat CA(f−1(C), f−1(R)).

2. If P sat CA(C,R) and N∩C = {} then P ||| RUNN sat CA(C,R).

3. If P sat CA(C,R) and P sat CA(C′,C∪R) then P sat CA(C∪C′,R).

4. If P sat CA(C,R) and C∩R = {} then P \ C is divergence-free.

Proof:
1. Assume that u∈ infinites(f−1(P)) and #(u � f−1(C)) = ∞. From the first we get f (u)∈ infinites(P).

From the latter it follows that #(f (u) � C) = ∞. With P sat CA(C,R) we have #(f (u) � R) = ∞ and
hence #(u � f−1(R)) = ∞.

2. Let u ∈ infinites(P ||| RUNN) and #(u � C) = ∞. With N ∩C = {} we get #((u \ N) � C) = ∞.
By definition of ||| we have u \ N ∈ infinites(P) (u \ N is infinite since #((u \ N) � C) = ∞). By
P sat CA(C,R) we get #((u \ N) � R) = ∞, hence #(u � R) = ∞.

3. Let u ∈ infinites(P) such that #(u � (C ∪C′)) = ∞. Both C and C′ are finite sets hence either
#(u � C) = infty or #(u � C′) = ∞ (or both). In the first case we get #(u � R) = ∞ by P sat CA(C,R).
In the second case it follows that #(u � (C∪R)) = ∞ and hence again #(u � C) = ∞ or directly
#(u � R) = ∞.

4. First of all note that if P sat CA(C,R) then P is divergence free. Now assume that there is a trace
tr ∈ divergences(P \ C). Then there exists a trace u ∈ infinites(P) such that tr = u \ C, and so
#(u \ C) < ∞. Hence #(u � C) = ∞. However, — as C∩R = {}— #(u � R) 6= ∞ which contradicts
P sat CA(C,R).

2

The most interesting of these properties is probably the last one: it relates the specification predicate to
the definition of divergence freedom in CSP. In CSP, a process does not diverge on a set of events C if
P \ C is divergence-free.

This gives us some results about the specification predicate for single Event-B machines and CSP
processes. Next, we would like to apply this to refinements. First, we again consider just two machines.
Lemma 5.6 Let M0 4 M1 with an associated refinement function f1 and let M0 sat CA(C0,R0). Then
M1 sat CA(f−1

1 (C0)∪C1 , f−1
1 (R0)).

Proof: Assume u∈ infinites(M1) and #(u � (f−1
1 (C0)∪C1) = ∞. We aim to establish that #(u � f−1

1 (R0)) =
∞. We have #(u � f−1

1 (C0)) = ∞ or #(u � C1) = ∞.
In the former case, Lemma 5.1 yields that f1(u � f−1(αM0)) ∈ infinites(M0). Then

#(u � f−1
1 (C0)) = ∞ (given)

#(f1(u � f−1(C0)) � C0) = ∞ (since renaming preserves length)
#(f1(u � f−1(αM0)) � C0) = ∞ (since C0 ⊆ αM0)
#(f1(u � f−1(αM0)) � R0) = ∞ (by M0 sat CA(C0,R0))

#(u � f−1(αM0)) � f−1(R0) = ∞ (since renaming preserves length)
#(u � f−1

1 (R0)) = ∞ (since R0 ⊆ αM0)

12 A CSP account of Event-B refinement

In the latter case Lemma 5.4 yields that #(u � R1) = ∞. Then

#(u � R1) = ∞

#(u � f−1
1 (R0∪C0)) = ∞ (since R1 = f−1

1 (C0∪R0))
#(u � f−1

1 (R0)) = ∞∨#(u � f−1
1 (C0)) = ∞

The first disjunct is the desired result, the second is the one already treated above.
2

Note that by Lemma 5.5 (4) the above result implies that the machine M1 does not diverge on f−1
1 (C0)∪

C1, in particular M0 \ (f−1
1 (C0)∪C1) is divergence-free.

Similar to the previous case, we can lift this to chains of refinement steps. Consider the last result
with respect to two refinement steps M0 4M1 4M2:

M0 sat CA(C0,R0) (given)
f−1(M0) sat CA(f−1(C0), f−1(R0)) (lemma 5.5 (1))

f−1(M0) ||| RUNN1 sat CA(f−1(C0), f−1(R0)) (lemma 5.5 (2),
since f−1

1 (C0)∩N1 = {})
M1 sat CA(f−1(C0), f−1(R0)) (lemma 5.1)

f−1
2 (M1) sat CA(f−1

2 (f−1(C0)), f−1
2 (f−1(R0))) (lemma 5.5 (1))

f−1
2 (M1) ||| RUNN2 sat CA(f−1

2 (f−1(C0)), f−1
2 (f−1(R0))) (lemma 5.5 (2))

M2 sat CA(f−1
2 (f−1(C0)), f−1

2 (f−1(R0))) (lemma 5.1)
M2 sat CA(C2∪ f−1

2 (C1) , f−1
2 (R1)) (lemma 5.6)

Then by applying Lemma 5.5(3) to the final two lines, with R = f−1
2 (f−1

1 (R0)), C = f−1
2 (f−1

1 (C0)), and
C′ = C2∪ f−1

2 (C1), we obtain

M2 sat CA(C2∪ f−1
2 (C1)∪ f−1

2 (f−1
1 (C0)) , f−1

2 (f−1
1 (R0))

Thus if

M0 4M1 4 . . .4Mn

then collecting together all the steps yields that

Mn sat CA((f−1
n (. . . f−1

1 (C0) . . .)∪ . . . f−1
n (Cn−1)∪Cn) , f−1

n (. . . f−1
1 (R0) . . .)) (2)

Finally, we would like to put together these results into one result relating the initial machine M0 to the
final machine Mn in the refinement chain. This result should use hiding for the treatment of new events,
and – by stating the relationship between M0 and Mn \ {new events} via infinite-traces-divergences
refinement – show that Event-B refinement actually does not introduce divergences on new events. For
such chains of refinement steps we always assume that A0 = C0 = {} (initially we have neither anticipated
nor convergent events), and An = {} (at the end all anticipated events have become convergent).

For this, we first of all need to find out what the “new events” are in the final machine. Define gi,j as
the functional composition of the event mappings from fj to fi:

gi,j = fi; fi+1; . . . ; fj

Then noting the disjointness of the union, by repeated application of

Cj]Aj]Rj = f−1
j (Cj−1]Aj−1]Rj−1)]Nj

S.Schneider, H. Treharne & H. Wehrheim 13

g−1
1,n(R0)
∪NEW

R1

N1

C1
A1

f1 fnRn−1

Cn−1

An−1

Nn−1

Rn

Cn

Nn

R0 R2

C2

A2

N2

f2 R3

C3

A3

N3

f3

C2
A2

C3
A3

Cn−1
An−1

Cn

Figure 4: Constructing NEW

g−1
1,n(R0)
∪CON

R1

N1

C1
A1

f1 fnRn−1

Cn−1

An−1

Nn−1

Rn

Cn

Nn

R0 R2

C2

A2

N2

f2 R3

C3

A3

N3

f3

C2
A2

C3
A3

Cn−1
An−1

Cn

Figure 5: Constructing CON

we obtain

Cj]Aj]Rj = g−1
1,j (C0]A0]R0)]g−1

2,j (N1)] . . .]g−1
j,j (Nj−1)]Nj (3)

Observe that this is a partition of Cj]Aj]Rj. Also, by repeated application of

Rj = f−1
j (Rj−1)] f−1

j (Cj−1)

we obtain

Rj]Cj = g−1
1,j (R0)]g−1

1,j (C0)]g−1
2,j (C1)] . . .]g−1

j,j (Cj−1)]Cj (4)

Observe that this is a partition of Cj]Rj.
In a full refinement chain M0 4 . . .4Mn we have that A0 = {},C0 = {}, and An = {}. Define:

NEW = g−1
2,n(N1)] . . .]g−1

n,n(Nj−1)]Nn

CON = g−1
1,n(C0)] . . .]g−1

n,n(Cj−1)]Cn

These constructions are illustrated in Figures 4 and 5.
Then from Equation 3 above with j = n, and using A0 = C0 = An = {} we obtain

Cn]Rn = g−1
1,n(R0)]NEW

14 A CSP account of Event-B refinement

From Equation 4 above with j = n we obtain

Cn]Rn = g−1
1,n(R0)]CON

Hence NEW = CON. From Theorem 5.2 and Line (2) above respectively we obtain that

f−1
n (. . .(f−1

1 (M0)) . . .) ||| RUNNEW vTDI Mn

and Mn sat CA(CON , f−1
n (. . . f−1

1 (R0) . . .))

Lemma 5.5(4) yields that Mn \ CON is divergence-free, i.e., Mn \ NEW is divergence-free. Hence by
Lemma 4.1 we obtain that

f−1
n (. . .(f−1

1 (M0)) . . .) vTDI Mn \ NEW (5)

or, equivalently, that the following theorem holds true.

Theorem 5.7 Let M0 4 M1 4 . . . 4 Mn be a chain of refinement steps such that A0 = C0 = {} and
An = {}, refining events according to functions fi, and let NEW be the set of events as calculated above.
Then

M0 vTDI f1(f2(. . . fn(Mn \ NEW) . . .))

Proof: This follows from the result in Line 5 above, using the CSP law f (f−1(P)) = P. 2

This result guarantees that Event-B refinement (a) does neither introduce “new traces on old events” nor
(b) does it introduce divergences on new events. This gives us the precise account of Event-B refinement
in terms of CSP which we were aiming at.

6 Conclusion

In this paper, we have given a CSP account of Event-B refinement. The approach builds on Butler’s
semantics for action systems [6]. Butler’s refinement rules allow new convergent events to be introduced
into action systems, so that refinement steps satisfy Mi vTDI (Mi+1 \ Ni+1), and hiding new events does
not introduce divergence. Abrial’s approach to Event-B refinement generalises this approach, allowing
new events to be anticipated as well as convergent, and also allowing splitting of events. Our approach
to refinement using CSP semantics reflects this generalisation and thus extends Butler’s, in order to
encompass these different forms of event treatment in Event-B refinement. We do not yet handle merging
events, and this is the subject of current research.

Recently, an Event-B‖CSP approach has been introduced [19]. It aims to combine Event-B ma-
chine descriptions with CSP [17] control processes, in order to support a more explicit view of control.
In this, it follows previous works on integration of formal methods [7, 22, 15, 18, 12], which aim at
complementing a state-based specification formalism with a process algebra.

The account of refinement presented here provides the basis for a flexible refinement framework in
Event-B‖CSP, and this is presented in [21]. The semantics justifies the introduction of a new status
of devolved, for refinement events which are anticipated in the Event-B machine but convergent in the
CSP controller. This approach has been applied to an initial Event-B‖CSP case study of a Bounded
Retransmission Protocol [20]. We aim to develop investigate further case studies. We are in particular

S.Schneider, H. Treharne & H. Wehrheim 15

interested in finding out whether the work of showing divergence-freedom (and also deadlock-freedom)
can be divided onto the Event-B and CSP part such that for some events convergence is guaranteed by
showing the corresponding proof obligations in Event-B while for others we just look at divergence-
freedom of the CSP process. The latter part could then be supported by model checking tools for CSP,
like FDR [10].

References

[1] J-R. Abrial (2010): Modeling in Event-B: System and Software Engineering. Cambridge University Press.

[2] J-R. Abrial, M. J. Butler, S. Hallerstede, T. S. Hoang, F. Mehta & L. Voisin (2010): Rodin: an open toolset
for modelling and reasoning in Event-B. STTT 12(6), pp. 447–466, doi:10.1007/s10009-010-0145-y.

[3] J-R. Abrial, M. J. Butler, S. Hallerstede & L. Voisin (2008): A Roadmap for the Rodin Toolset. In E. Börger,
M. J. Butler, J. P. Bowen & P. Boca, editors: ABZ, Lecture Notes in Computer Science 5238, Springer, p.
347, doi:10.1007/978-3-540-87603-8.

[4] E. A. Boiten & J. Derrick (2009): Modelling Divergence in Relational Concurrent Refinement. In Michael
Leuschel & Heike Wehrheim, editors: IFM, Lecture Notes in Computer Science 5423, Springer, pp. 183–199,
doi:10.1007/978-3-642-00255-7.

[5] C. Bolton & J. Davies (2002): Refinement in Object-Z and CSP. In M. Butler, L. Petre & K. Sere, editors:
IFM 2002: Integrated Formal Methods, LNCS 2335, pp. 225–244.

[6] M. J. Butler (1992): A CSP approach to Action Systems. DPhil thesis, Oxford University.

[7] M. J. Butler (2000): csp2B: A Practical Approach to Combining CSP and B. In: FACS, pp. 182–196.

[8] J. Derrick & E. A. Boiten (2001): Refinement in Z and Object-Z. Springer-Verlag, doi:10.1007/978-1-4471-
0257-1.

[9] J. Derrick & E.A. Boiten (2003): Relational Concurrent Refinement. Formal Aspects of Computing 15(2-3),
pp. 182–214, doi:10.1007/s00165-003-0007-4.

[10] Formal Systems (Europe) Ltd.: The FDR Model Checker. http://www.fsel.com/ (accessed 8/3/11).

[11] C.A.R. Hoare (1985): Communicating Sequential Processes. Prentice-Hall.

[12] A. Iliasov (2009): On Event-B and Control Flow. Technical Report CS-TR-1159, School of Computing
Science, Newcastle University.

[13] C. Métayer, J.-R. Abrial & L. Voisin (2005): Event-B Language. RODIN Project Deliverable 3.2,
http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf, accessed 25/5/10.

[14] C. Morgan (1990): Of wp and CSP. In: Beauty is our business: a birthday salute to Edsger W. Dijkstra,
Springer, pp. 319–326.

[15] E-R. Olderog & H. Wehrheim (2005): Specification and (property) inheritance in CSP-OZ. Sci. Comput.
Program. 55(1-3), pp. 227–257, doi:10.1016/j.scico.2004.05.017.

[16] A.W. Roscoe (1998): Theory and Practice of Concurrency. Prentice-Hall.

[17] S. Schneider (1999): Concurrent and Real-time Systems: The CSP approach. Wiley.

[18] S. Schneider & H. Treharne (2005): CSP theorems for communicating B machines. Formal Asp. Comput.
17(4), pp. 390–422, doi:10.1007/s00165-005-0076-7.

[19] S. Schneider, H. Treharne & H. Wehrheim (2010): A CSP Approach to Control in Event-B. In Dominique
Méry & Stephan Merz, editors: IFM, Lecture Notes in Computer Science 6396, Springer, pp. 260–274,
doi:10.1007/978-3-642-16265-7.

[20] S. Schneider, H. Treharne & H. Wehrheim (2011): Bounded Retransmission in Event-B‖CSP: a Case Study.
Technical Report CS-11-04, University of Surrey.

http://dx.doi.org/10.1007/s10009-010-0145-y
http://dx.doi.org/10.1007/978-3-540-87603-8
http://dx.doi.org/10.1007/978-3-642-00255-7
http://dx.doi.org/10.1007/978-1-4471-0257-1
http://dx.doi.org/10.1007/978-1-4471-0257-1
http://dx.doi.org/10.1007/s00165-003-0007-4
http://dx.doi.org/10.1016/j.scico.2004.05.017
http://dx.doi.org/10.1007/s00165-005-0076-7
http://dx.doi.org/10.1007/978-3-642-16265-7

16 A CSP account of Event-B refinement

[21] S. Schneider, H. Treharne & H. Wehrheim (2011): Stepwise refinement in Event-B‖CSP. Technical Report
CS-11-03, University of Surrey.

[22] J. Woodcock & A. Cavalcanti (2002): The Semantics of Circus. In D. Bert, J. P. Bowen, M. C. Henson &
K. Robinson, editors: ZB, Lecture Notes in Computer Science 2272, Springer, pp. 184–203. Available at
http://link.springer.de/link/service/series/0558/bibs/2272/22720184.htm.

http://link.springer.de/link/service/series/0558/bibs/2272/22720184.htm

	Introduction
	Background
	CSP
	Event-B

	CSP semantics for Event-B machine
	Refinement
	CSP refinement
	Event-B refinement

	Event-B refinement as CSP refinement
	New events
	Convergent and anticipated events

	Conclusion

