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Abstract: This paper describes the design of a supervised verifiable voting 

protocol suitable for use for elections in the state of Victoria, Australia. We 

provide a brief overview of the style and nature of the elections held in Victoria 

and associated challenges. Our protocol, based on Prêt à Voter, presents a new 

ballot overprinting front-end design, which assists the voter in completing the 

potentially complex ballot. We also present and analyse a series of modifications 

to the back-end that will enable it to handle the large number of candidates,    , 

with ranking single transferable vote (STV), which some Victorian elections 

require. We conclude with a threat analysis of the scheme and a discussion on the 

impact of the modifications on the integrity and privacy assumptions of Prêt à 

Voter. 

 

 

1  Introduction 

Australian elections have distinctive features that create unique challenges for 

automation. Almost all elections in Australia use preferential electoral systems. Both the 

alternative vote (AV) and the single transferable vote (STV) are common. Preferential 

voting offers voters a high degree of freedom to express their choices, but at the same 

time can make it hard for voters to cast binding votes and is prone to voter error. 

Unintentional numbering errors are by far the largest category of errors contributing to 
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informal
1
 ballot papers—comprising 50% of the total informal votes in the 2010 

Victorian state election. 

To help simplify the voting, STV elections often provide voters with the option of 

selecting ‘group tickets’, which are predetermined preferences chosen by parties. This 

can result in large and complex ballot papers. For example in Victorian elections, the 

Legislative Council ballots have had up to 38 individual candidates and 11 group tickets. 

 

 
 

Figure 1: Ballot paper for the Victorian Legislative Council  

 

A sample ballot is shown in Figure 1. The ballot has a top section where voters can vote 

for a party or group (known as voting ‘above-the-line’), and a bottom section where 

voters can mark their preferences for individual candidate (known as voting ‘below-the-

line’). 

There is a very tight turnaround for printing and delivering the ballots. Candidate 

nominations typically close on a Friday with Early Voting commencing at 4pm the same 

day. Ballots must be printed, checked and delivered as soon as possible, no later than the 

following Monday morning.  

Another important characteristic of Australian elections is compulsory voting. This 

introduces numerous logistical challenges. For example, in state elections voters can cast 

their votes at any polling place in their state, which means that ballot papers for every 

electorate must be delivered to each polling place before the voting commences, and 

then completed ballots must be returned to their correct electorates afterwards. Polling 

places are also set up overseas, usually at Australian embassies.  

There is a strong onus on electoral commissions to provide a high level of 

accessibility for all voters. The complexity of preferential ballots causes difficulties for 

marginalised voters, in particular for voters with a print disability and voters from non-

English speaking backgrounds. Many voters in these categories require human assistance 

to fill out their ballots, in which case they have no protection of vote secrecy. E-voting 

                                                           
1 by informal we mean any vote that is incorrectly filled and/or somehow ambiguous and non-binding 



 
 

 

 

 

 

has the potential to help solve many of these problems. Although electoral commissions 

in Australia have generally been cautious about e-voting, there have been strong pushes 

towards adopting e-voting over the last five years. 

The Victorian Electoral Commission (VEC) is one of the early adopters of e-voting 

in Australia. In 2006, the VEC trialled a supervised e-voting system provided by a third-

party vendor, and the system was rolled out on a larger scale in 2010. The e-voting 

system offered several benefits for both voters and the VEC. The voting machines 

alerted voters to numbering errors and provided instructions in a choice of 12 languages. 

All machines were equipped with audio facilities to provide guidance and feedback to 

vision impaired voters. The electronic nature of the ballots helped reduce the 

administrative overhead and physical security risks of returning the ballots through 

multiple third parties (for instance couriers); the ballots were submitted to centralised 

servers via a private network. 

However there were a number of concerns with this system. First and foremost, the 

system did not provide any meaningful verifiability of the votes. In addition, the 

proprietary nature of the system meant that none of the design and implementation 

details could be made public. The necessary heavy customisation of the vendor’s core 

product (for instance to handle preferential ballots) created difficulties in tightly 

integrating the e-voting system with the VEC’s existing election administration process 

(such as allowing general staff to run the entire system), and in deriving ongoing benefit 

from the supplier’s core solution, which is on another development branch. 

To address these shortcomings, the VEC has decided to develop its own e-voting 

system in collaboration with the e-voting community. Academics from several 

universities are working with the VEC to design a suitable cryptographic e-voting 

protocol that provides both individual and universal verifiability. The design and the 

final system will be publicly available for peer review. The VEC’s vision is for voters to 

cast their votes using the machines, which will provide (optional) take-home receipts for 

voters to verify their votes.  

One of the main challenges is in finding the right balance between usability and 

security, in particular requiring voters to verify large amounts of information in 

preferential ballots and to perform cryptographic operations such as verifying digital 

signatures. Our main contribution is not in the proposal of the protocol, but more 

importantly in highlighting the difficulties and potential trade-offs in practice when 

applying cryptographic voting schemes to large-scale public elections that have specific 

requirements. 

1.1  Related works 

The present work is based on the Prêt à Voter (PaV) electronic voting system [Rya04, 

CRS05]. The original PaV scheme has subsequently undergone various adaptations and 

enhancements, some of which are described elsewhere in this paper. The basic concept 

remains unchanged and is described as follows. 

The voter receives a printed ballot as shown in Fig. 2 below. The order of the 

candidates is independently randomised for each ballot and the value “7rJ94K” repre-

sents an encryption of the order on the form. 
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Figure 2:  A Prêt à Voter ballot form 

In the polling station, the voter is given at random a ballot sealed in an envelope. She 

takes this to the booth, extracts the ballot form, marks the candidate of choice, separates 

the right-hand and left-hand sides (RHS, LHS) and destroys the LHS. She can now leave 

the privacy of the booth with the RHS of the ballot form. In the presence of officials and 

perhaps observers, the RHS is placed under an optical reader which records the 

information, that is, the value at the bottom of the strip and the position marked or the 

preferential rankings. The RHS, or a copy thereof, is retained as a receipt. Note that as 

the candidate order is randomised and has been destroyed, the receipt does not reveal her 

vote (except to someone possessing the decryption keys). The decryption keys are shared 

between a set of parties such that a threshold set of these parties is required to perform 

decryption. This ensures that no single party can decrypt all ballots. Once all voting has 

ceased, the receipts are posted on a secure Web Bulletin Board (WBB). Voters can use 

this facility to confirm that their receipts appear correctly. A set of mix servers then 

perform a series of robust, anonymising, re-encryption mixes (e.g. [Nef01, FS01, 

Wik10]) on the receipts and the votes are emitted and counted. 

Although apparently simple on the surface, the underlying protocol offers many of 

the properties desirable in voting systems such as, ballot secrecy, individual and 

universal verifiability and receipt-freeness. As PaV has a certain similarity to traditional 

pen-and-paper, booth-based voting, the user experience is familiar and hence, the 

scheme is readily adaptable to real-world situations. 

The original scheme was designed for First-Past-The-Post (FPTP) voting as currently 

used in the UK, but it is clear that it adapts easily to ranked, AV etc.: the voter simply 

adds further marks to the ballot. However, if done naively, this opens up possibilities of 

“Italian” style attacks. This has been addressed in  [TRN08, XCH10], which introduce 

new mixing and tallying algorithms. 

Certain fielded, verifiable voting systems offer potential for ranked voting such as, 

Scantegrity II [CCC08] and Civitas [CCM08]. However, it is unclear how they would 

perform with a large number of candidates. The “checkerboard style” ballots in 

Scantegrity II would for instance, be impractical with potentially     candidates. 

Encoding of vote preferences in Civitas could incur a significant processing overhead 

when scaled up for a sizeable candidate base. Furthermore, Civitas is a remote rather 

than supervised scheme. Wombat (http://www.wombat-voting.com/) is currently 

implemented as a FPTP supervised system, but again it is unclear how it would handle a 

large number of ranked vote choices. There could also be privacy issues connected to the 

plaintext audit trail provided by Wombat ballots. 

With the PaV implementation for the VEC, we note that although workable solutions 

have been found for the moment, many research challenges remain. Whilst a formal 

security analysis has yet to be carried out, security of the scheme is forefront in the 



 
 

 

 

 

 

development process and is being continuously monitored and discussed by all parties 

involved. 

 

2  Front-End Design 

We now describe the proposed system.  

2.1  Electronic Ballot Marking 

In this section, we introduce the procedures of vote casting. In other words, how to 

capture the voter’s intent into an encrypted vote and how to verify that the encrypted 

vote has been correctly recorded by the election system.  

 

Echo                     

Bravo                      

Alpha                     

Delta                     

Charlie                     

{P}  

  

An example ballot is shown as in the above table. It contains a perforation vertically 

down the middle so that the two halves can be separated. The LHS lists the candidates in 

a random order. In the bottom of the LHS, there is also an unencrypted representation P 

of the candidate order (e.g. it can be a computer-readable barcode). The RHS is left 

blank for the voter to mark her rankings. Moreover, in the RHS, an encrypted value, 

called an onion is associated with each candidate. If it is decrypted, its plaintext will 

represent the corresponding candidate in the LHS. The encoding of the onions is 

explained in section 3.  

In contrast to the traditional PaV protocol, the voter does not mark her preferential 

rankings on the ballot directly. This is because the state of Victoria’s upper house 

election contains around 36 candidates, and ranking so many candidates using a 

candidate list in the random order is obviously not user friendly. Instead, we will use a 

voting device, called an Electronic Ballot Marker (EBM), to help the voter mark her 

rankings. The EBM is a standalone, isolated computer device with a barcode reader and 

touch screen user surface. To cast a vote, the voter first inserts the ballot into the EBM, 

which will read the permutation information P in the bottom of the LHS. The EBM 

displays the ballot on its touch screen user surface such that the candidate list is in the 

official draw order. The user interacts with the touch screen to give her preferential 

rankings. Note that the EBM can also assist the voter by pointing out ill-formed vote. 

Once the vote is confirmed, the EBM sorts the voter’s rankings according to the 

permutation information P, and overprints the results on the RHS of the ballot. 

The voter takes her completed ballot paper to a scanner. As with the conventional 

PaV, she separates the ballot along the perforation, destroys the LHS and then places the 

RHS into the scanner. After that, the scanner submits the preferences and onions to the 

WBB, which will then generate a hash value of the received information and send the 

digital signature of the hash value back to the scanner. The scanner now overprints the 

signed hash onto the RHS, which can then be taken away by the voter as her receipt. 



 
 

 

 

 

 

The voter can optionally audit either the entire or part of the vote casting procedures. 

Here, we explain how the complete auditing should be carried out:  

• Audit the ballot: This audit checks whether the ballot is correctly generated. In 

other words, whether each onion in the RHS correctly encrypts the corresponding 

candidate in the LHS, and whether the permutation information P contains the 

correct candidate order. A ballot can be either audit or cast, but not both. The 

auditing method is as in the traditional PaV [CRS05].  

• Audit the EBM: The EBM transfers the voter’s rankings wrt the candidate list in 

the canonical order, to rankings wrt the candidate list printed in the ballot. This 

audit checks that the transformation is done properly. For example, the voter can 

randomly note down some or all of the candidate-preference pairs from the 

EBM’s touch screen surface and then compare whether these pairs are consistent 

with those printed on the ballot.  

• Audit the vote recording: This audit ensures that the encrypted vote has been 

correctly recorded by the WBB. To perform the audit, the voter calculates a hash 

value of the preferences and onions in her receipt and then checks whether the 

signed hash from the WBB is valid.  

2.2  Digital Signature Issues 

One of the fundamental principles of PaV is the issuing of a receipt that the voter can use 

to verify that their vote has been correctly recorded onto the WBB. It is this checking 

that assures the voter that their vote is being included in the count. If anything is amiss, 

the information on the receipt is different or missing from the WBB, the voter can 

challenge the authorities. As such, the veracity of the receipt is vitally important.  

A valid receipt provides protection for two parties: it provides the voter with 

evidence to launch an appeal, whilst simultaneously providing the system with 

protection from false accusation. It is therefore essential that any issued receipt is 

verified by the voter when received. If it is invalid or false, the voter must appeal at that 

point. Once the voter has left the polling station their right to appeal about false receipts 

is over.  

The difficulty is that it is easy to verify a digital signature on a computer, but 

impossible for a human to do it in their head. When in the polling station the voter is 

virtually devoid of any trusted hardware and therefore does not have the ability to check 

the veracity of the digital signature in a way that is assured and trusted by them.  

Alternative approaches have been suggested ([CBH11, Rya11]), that either augment 

or entirely do away with the digitally signed receipt. Such schemes are based on 

verifying codes to ensure that the vote has been accurately recorded on the WBB. Such 

schemes have the desirable property that when the voter leaves the polling station they 

have already completed their verification step. However, they do require a higher level 

of trust in the WBB, although there already exists a degree of trust in it with the digital 

signatures. The bigger disadvantage is that the codes used to verify the recording of the 

vote must be distributed to the voter. The typical suggestion is to include them on the 

ballot form issued to the voter. However, this then places a chain of custody requirement 

on those ballots, which if breached could potentially undermine integrity. There may be 

situations where such a chain of custody already exists or where it is a preferred 

compromise to the digital signature approach.  



 
 

 

 

 

 

The final and preferred option is to permit voters to use their mobile phones to verify 

the digital signature. Constructing a phone application to do such a task is relatively easy 

and multiple organisations could undertake such a task and provide it for free, allowing 

voters to use an app from an organisation they trust or perhaps even build their own. 

Such an approach does require that the voter is in possession of a smartphone and that 

they sufficiently trust the device and the application to perform the operation. There is 

growing concern about malware on mobile devices, but currently the average user is 

likely to trust such a device. There are concerns about disenfranchising the less well off 

or older generation who tend not to own smartphone devices. Whilst this is true, the 

validity of the system only requires a small number of people to check their receipt. 

Unless the machine/system can know in advance whether someone has a smartphone, it 

cannot risk cheating in case it gets caught. There may also be legislative problems with 

allowing phones and photographic devices to be used in a polling station, however, 

provided that the process is well managed and checking is performed in a designated 

area, such concerns should be mitigated. It is worth noting that the checking of the 

signature can be performed within the polling station, in public with assistance if 

required. 

 

3  Back-End Design 

In this section, we discuss how to tally the received encrypted votes into the election 

result.  

We will use the Exponential ElGamal cipher [ElG85] in our protocol. A plaintext 

message   will be encrypted as               . In the ballot form, there will be a 

ciphertext next to each candidate. Suppose there are   candidates in the election, the  -th 

candidate will be encoded as        , where   is a value larger than   (e.g.     
 ). A received vote will look similar to the following table (note that the columns might 

be in different orders, but the tally methods will not be affected): 

 

Ciphertext               …          

Ranking R1 R2 … Rk 

  

3.1  Tally Method 1 

We first sort the ciphertexts within the above table according to their rankings. The 

result will be a  -ciphertexts tuple              ranked in the canonical order. We then 

treat each of the ciphertext tuples as an input to the mixnets (e.g. Verificatum [Wik10]). 

After the shuffle, all ciphertexts in the outputs are decrypted, and the election result will 

be calculated. However, the drawback of this method is that the computational cost for 

the shuffle and decryption phase will be expensive if the number of candidates is large. 

Hence it is not ideal for elections with large numbers of candidates. 



 
 

 

 

 

 

3.2  Tally Method 2 

Alternatively, for a particular vote, we can use the homomorphic properties of the 

exponential ElGamal cipher to first aborb all the ciphertexts and their corresponding 

rankings into a single ciphertext as follows
2
:  

               

 

   

 

 

where              
   . Then for each vote, we input the ciphertext      into the 

mixnets. After the shuffle, all the ciphertexts will be decrypted. Hence, somewhere in the 

outputs, there will be a value   . In order to retrieve   from   , we can build up a 

look-up table for all (    ) value pairs in advance (e.g. even before the tally phase 

starts). After the decryption, we search the table to retrieve the value  , and the ranking 

choice for this vote can be calculated using the value  . 

This method is superior to Tally Method 1 because the computational cost for the 

shuffle and decryption phase has been reduced to the minimum: for each vote, there is 

only one ciphertext to be shuffled and decrypted. However, the disadvantage is that we 

need to build a look-up table in order to retrieve the plaintext. For an election with   

candidates, the look-up table will contain    different (    ) values. So for elections 

with small numbers of candidates (e.g. Victoria’s lower house election with around 7 

candidates), to build such a look-up table is perfectly reasonable. But for elections with 

large numbers of candidates, it will be infeasible to build such a look-up table. For 

example, Victoria’s upper house election will have     candidates, and the size of the 

look-up table for 36 candidates is                   .  

3.3  Tally Method 3 

The third tally method can be considered as a trade-off between the above two methods. 

It is specially designed for elections with large numbers of candidates. We use Victoria’s 

upper house election as an example to demonstrate the idea (we assume there are 36 

candidates). 

Similar to the Tally Method 1, for a received vote as shown in the above table, we 

first sort all its ciphertexts into a k-ciphertexts tuple              which is ranked in the 

canonical order. Now, start from the first ciphertext in the tuple, we treat every   

ciphertexts as a group. Hence for the VEC election, if we set the size of the group    , 

we can separate all 36 ciphertexts into        groups. As follows, we treat each group 

as   ciphertexts ranked from 1 to  . 

The following processes will be similar as in the Tally Method 2. For each of the  -

sizes group                            where                   , we will absorb all its 

  ciphertexts into a single ciphertext using the homomorphic property as follows:  

                 
 

 

   
 

  

Hence, we have packed a  -ciphertexts tuple into     tuples of  -ciphertexts each as  

                                                           
2 Note that in order to ensure the correctness of the election result, we need to ensure that   is always smaller 

than   which is the order of  . For 128-bit, 256-bit and 512-bit  , we can handle at maximum 27, 47 and 81 
candidates respectively. 



 
 

 

 

 

 

                             

At this moment, for each received vote, we input its     many  -ciphertexts tuples 

into the mixnets. After the shuffle, all ciphertexts in the outputs are decrypted. Note that 

after the decryption, somewhere in the outputs, we only obtain                        
and we still need one look-up table to retrieve their plaintexts {                }. 

This time, the size of the look-up table is   
  

  

      
 which is much smaller than   . In 

our case, for      and    , the size of the table is   
              .  

We have shown a special case above that    . In case if             where    
  , the above method still works. Now, we can group the   ciphertexts into several  -

sizes groups and the remaining   ciphertexts are treated as a group. In such a case, we 

build two look-up tables, one with size   
  

  

      
 to look up the  -sizes ciphertext 

groups and the other with size   
  

  

      
 to look up the  -sizes ciphertext group.  

Therefore, thanks to this tally method, we are able to handle elections with large 

numbers of candidates. We can carefully choose the value   (how many ciphertexts to be 

absorbed into a single ciphertext) so that the size of the look-up table   
  is reasonable. 

Meanwhile, the shuffle and decryption phase is  -times faster than the Tally Method 1. 

 

4  Discussion 

In the previous sections, we tried to clarify the fundamental design ideas in a simple 

way, so some technical details and design decisions are left out. In this section, we 

discuss some of these issues. 

 Where are the onions stored? : In section 2, we mention that in the RHS, an 

encrypted value, called an onion is associated with each candidate. This implies 

that the onions are printed on the RHS. However, in order to achieve the proper 

security level, the size of each onion will be around 1KB. Obviously, it will be 

impractical to print 36KB data on the paper ballot. To solve this problem, we 

suggest the onions are recorded on the WBB, and that they are linked to a 

particular ballot using some unique serial number. 

 Italian attack: There are two types of Italian attack. The first type works for 

elections in which the voter can express her preference in a large number of 

ways. Coercers can force a voter to cast her vote in a unique way that no one 

else might use. Hence, if coercers find out that no one has cast a vote in this 

way, the voter will be caught. The second type works for elections in which the 

transfer history is revealed. Coercers can force a voter to rank an unpopular 

candidate before a popular candidate. Hence if that unpopular candidate is 

eliminated but there is no vote transfer to the popular candidate, the voter will be 

caught. The tally methods in this scheme prevent neither type of Italian attack. 

But this is a design decision to tradeoff security for the sake of efficiency. In the 

literature, although some schemes (e.g. [TRN08, BMN09, XCH10]) are able to 

solve the Italian attacks, their computational cost will prevent them from being 

implemented in practice at the moment. 

 Ballot validity proof: Generally speaking, in verifiable elections with 

homomorphic tallying, every ballot should contain some validity proof which 



 
 

 

 

 

 

proves that each ciphertext encodes one of the pre-defined values. Otherwise, a 

faulty ballot could ruin the election result by introducing thousands of extra 

votes. In our design, although the homomorphic property has been used in the 

tally phase, it is only used within the ballot itself to encode the preferences but 

not across different ballots. Hence the ballot validity proof is not required. Any 

invalid ballot can only ruin itself: it could neither introduce extra votes nor ruin 

the other ballots. 

 Impact of the different tallying methods: In section 3, although we have 

introduced three different tallying methods, the first two are just special cases of 

the last method. The major difference lies in how many ciphertexts can be 

absorbed into a single packing. Election authorities should choose this parameter 

based on different circumstances, and the selection will only affect the 

computational cost in the tallying phase rather than the security properties.  

 Vote packing using small primes: There is an alternative method to pack the 

ranking information using small primes [PABL04]. For example,              

are small primes representing each of the candidates, and              are their 

rankings respectively. Then the vote can be packed as     
       

  . 

However, compared with the method we have introduced in the paper, this 

method has two drawbacks. Firstly, when using small primes as counters, the 

aggregated value will grow very quickly as the number of candidates increases. 

If such value is larger than  , it will be wrapped around by  , and we still need a 

look up table when retrieving the ranking choices. Moreover, this might cause 

collision problem as well. Secondly, safe primes (primes of the form      
 ) need to be used, so that small primes in    can be selected as the counters. 

However, this results in a much larger size of  , which will make many 

calculations much slower. With our method, primes of the form        

where     can be used to speed up ballot generation and tallying without 

affecting security. 

 

5  Security Properties 

In this section we will briefly discuss how the modifications made to standard PaV 

impact on the security properties normally associated with PaV. There are a number of 

security properties that are important to an electronic voting scheme. They are:  

• Integrity  

• Privacy  

• Receipt-freeness  

• Coercion Resistance  

• Verifiability  

• Robustness  

• Usability  

The integrity and receipt-freeness properties of the proposed system are identical to that 

of standard PaV. The manner in which the ballot form is filled out has changed, but not 

the underlying casting process or receipt construction. Likewise the verifiability 

properties are transferable, provided that the voter performs the necessary checks; 

namely checking the overprinting and the digital signature. It could be argued that this is 

a harder task with the proposed system, given the quantity of information that needs 

checking. However, the system does make it is easier to correctly complete the complex 



 
 

 

 

 

 

ballot form. The complexity of checking is a consequence of the complexity of the 

election, not the underlying system. Whilst the area of usability has improved in one 

sense, the filling out of the ballot, it may have suffered in how the overprinting approach 

will work. This requires further analysis and trials to determine how easy and reliable it 

is for the voter to perform.  

The issue of robustness is constantly considered and has influenced the design, with 

aspects like the WBB peered among different parties. The robustness of the system is 

dependent on both the technology and the procedures surrounding it and is still being 

refined. The issue of requiring a network connection throughout the election in order to 

submit votes to the WBB and receive digital signatures back is a possible weakness. 

Various fallback options are still being discussed and analysed to determine the best 

compromise. 

It is the privacy property that is most effected by the proposed changes. The system 

now utilises an EBM that learns the vote. Strategies for mitigating this have been 

included, for example enforcing that the EBM is offline and is wiped at the end of the 

election. However, there is a new trust assumption here, that the EBM has been honestly 

setup and has not been compromised in some way to record and transmit the votes.  

The issue of coercion resistance is impacted by the changes in privacy. Coercion 

resistance is far more complicated, since it also covers the perception of the voter. A 

weakening in the privacy guarantees would likely reduce coercion resistance; such a 

discussion is beyond the scope of this paper. 

 

6  Conclusion 

In this paper we have presented an end-to-end verifiable voting scheme, which would be 

suitable for use in a Victorian state election. We have detailed the modifications we 

would need to make to standard PaV in order to comply with the requirements of scale, 

usability and legislation. In trying to move from theory to practice, modifications and 

compromises are a necessity. The challenge is choosing the right compromises and being 

able to adequately justify them. Whilst some of these modifications are specific to the 

state of Victoria, for example above-the-line and below-the-line voting, the process we 

have undertaken is transferable to alternative scenarios.  
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