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Abstract

The safety analysis of interlocking railway systems involves verifying free-
dom from collision, derailment and run-through (that is, trains rolling over
wrongly-set points). Typically, various unrealistic assumptions are made
when modelling trains within networks in order to facilitate their analyses.
In particular, trains are invariably assumed to be shorter than track seg-
ments; and generally only a very few trains are allowed to be introduced into
the network under consideration.

In this paper we propose modelling methodologies which elegantly dismiss
these assumptions. We first provide a framework for modelling arbitrarily
many trains of arbitrary length in a network; and then we demonstrate that
it is enough with our modelling approach to consider only two trains when
verifying safety conditions. That is, if a safety violation appears in the orig-
inal model with any number of trains of any and varying lengths, then a
violation will be exposed in the simpler model with only two trains.

Importantly, our modelling framework has been developed alongside – and
in conjunction with – railway engineers. It is vital that they can validate the
models and verification conditions, and – in the case of design errors – obtain
comprehensible feedback. We demonstrate our modelling and abstraction
techniques on two simple interlocking systems proposed by our industrial
partner. As our formalization is, by design, near to their way of thinking,
they are comfortable with it and trust it.
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1. Introduction

Formal verification of railway control software has been identified as one
of the Grand Challenges of Computer Science [1]. As is typical with Formal
Methods, this challenge comes in two parts: the first addresses the question
of whether the mathematical models considered are legitimate representa-
tions of the physical systems of concern. The modelling of the systems, as
well as of proof obligations, needs to be faithful. The second part is the
question of how to utilize available technologies, for example model checking
or theorem proving. Whichever verification process is adopted, it needs to
be both effective and efficient.

In a series of papers [2, 3, 4, 5] we have been developing a new modelling
approach for railway interlockings. This work has been carried out in con-
junction with railway engineers drawn from our industrial partner Invensys
Rail. By involving the railway engineers from the start, we benefit twofold:
they provide realistic case studies, and they guide the modelling approach,
ensuring that it is natural to the working engineer.

We base our approach on CSP||B [6], which combines event-based with
state-based modelling. This reflects the double nature of railway systems,
which involves events such as train movements and – in the interlocking –
state based reasoning. In this sense, CSP||B offers the means for the natural
modelling approach we strive for. The formal models are by design close
to the domain models. To the domain expert, this provides traceability and
ease of understanding. This addresses the first of the above stated challenges:
faithful modelling. The validity of this claim was demonstrated in particular
in [2] where a non-trivial case study – a complex double junction – was
provided which was understandable and usable by our industrial partners.

In [3] we addressed the second challenge: that of how to effectively and
efficiently verify safety properties within our CSP||B models. To this end we
developed a set of abstraction techniques for railway verification that allow
the transformation of complex CSP||B models into less involved ones; we
proved that these transformations are sound; and we demonstrated that they
allow one to verify a variety of railway systems via model checking. The first
set of abstractions allows us to prove safety of a scheme plan which involves an
unbounded number of trains by considering only a bounded number of trains
with the number dependent only on the number of routes in the scheme
plan. Their correctness proof involves slicing of event traces. Essentially,
these abstractions provide us with finite state models. The second set of
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abstractions simplifies the underlying track topology. Here, the correctness
proof utilizes event abstraction specific to our application domain similar to
the ones suggested by Winter in [7]. These abstractions make model checking
faster.

Still present in these approaches, however, are unrealistic assumptions
about trains within networks: namely that the trains are shorter than the
track segments in the network, and that only a very few trains will ever
enter the network. In this paper we address these unrealistic assumptions.
Firstly, we develop a modelling approach which incorporates train and track
lengths, allowing trains to span any number of track segments. Secondly, we
provide an abstraction technique which allows us to detect safety violations
in networks involving an arbitrary number of trains by considering only two
trains (thus markedly improving on our previous result).

The paper is organised as follows. In Section 2 we discuss our modelling
language CSP||B. In Section 3 we introduce railway concepts and our two
case studies, and describe how they are modelled in CSP||B. In particular,
we outline in detail the modelling of train and track lengths. In Section 4 we
present our main result that considering two trains suffices in our analyses for
safety properties. The application of our approach is presented in Section 5
via verification of our example scenarios. Finally, in Section 6 we put our
work in the context of related approaches.

2. Background to CSP||B

The CSP||B approach allows us to specify communicating systems using
a combination of the B Method [8] and the process algebra CSP (Commu-
nicating Sequential Processes) [9]. The overall specification of a combined
communicating system comprises two separate specifications: one given by
a number of CSP process descriptions and the other by a collection of B
machines. Our aim when using B and CSP is to factor out as much of the
“data-rich” aspects of a system as possible into B machines. The B machines
in our CSP||B approach are classical B machines, which are components con-
taining state and operations on that state. The CSP||B theory [6] allows us
to combine a number of CSP processes Ps in parallel with machines Ms to
produce Ps ‖ Ms which is the parallel combination of all the controllers and
all the underlying machines. Such a parallel composition is meaningful be-
cause a B machine is itself interpretable as a CSP process whose event-traces
are the possible execution sequences of its operations. The invoking of an op-
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eration of a B machine outside its precondition within such a trace is defined
as divergence [10]. Therefore, our notion of consistency is that a combined
communicating system Ps ‖ Ms is divergence-free and also deadlock-free [6].

A B machine consists of a collection of clauses and a collection of oper-
ations that query and modify the state. The machine clause declares the
abstract machine and gives its name. The variables clause declares the
variables that are used to carry the state information within the machine.
The invariant clause gives the type of the variables, and more generally
it also contains any other constraints on the allowable machine states. The
initialisation clause determines the initial state of the machine.

Operations of a B machine are given in one of the following formats:

preconditioned operation – oo ←− op(ii) = PRE P THEN S END:
if this is called when P holds then it will execute S , otherwise it will
diverge.

guarded event – op = SELECT P THEN S END: this will execute S
when P holds, and will block when P is false.

The declaration oo ←− op(ii) for preconditioned operation introduces
the operation: it has name op, a (possibly empty) output list of variables oo,
and a (possibly empty) input list of variables ii . The precondition of the
operation is predicate P . This must give the type of any input variables,
and can also give conditions on when the operation can be invoked. If it is
invoked outside its precondition then divergence results. Finally, the body
of the operation is S . This is a generalised substitution, which can consist of
one or more assignment statements (in parallel) to update the state or assign
to the output variables. Conditional statements and nondeterministic choice
statements are also permitted in the body of the operation. The guarded
event simply has a name op. If its condition fails, then its execution is
blocked rather than leading to a divergence.

In combined communicating systems we also define B machines that do
not have operations and only contain sets, constants and invariants. These
are included in order to provide contextual information to a system.

The language we use to describe the CSP processes for B machines is as
follows:

P ::= Stop | e?x !y → P(x ) | P1 2 P2 | P1 u P2 |
| if b then P1 else P2 end

| P1 ‖ P2 | P1 A‖B P2 | P1 ||| P2 | N (exp)
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The process Stop does not engage in any events, it represents deadlock.
The process e?x !y → P(x ) defines a channel communication where x repre-
sents all data variables on a channel, and y represents values being passed
along a channel. Channel e is referred to as a machine channel as there is
a corresponding operation in the controlled B machine with the signature
x ←− e(y). Therefore the input of the B operation y corresponds to the
output from the CSP, and the output x of the B operation to the CSP input.
Here we have simplified the communication to have one output and one input
but in general there can be any number of inputs and outputs. The external
choice, P1 2 P2, is initially prepared to behave either as P1 or as P2, with
the choice being made on occurrence of the first event in the environment.
The internal choice, P1 u P2, is similar, however, the choice is made by the
process rather than the environment. Another form of choice is controlled
by the value of a boolean expression in an if expression. The synchronous
parallel operator, P1 ‖ P2, executes P1 and P2 concurrently, requiring them
to synchronize on all events. The alphabetized parallel operator, P1 A‖B P2,
requires synchronisation only in A∩B , allowing independent performance of
events outside this set. The interleaving operator, P1 ||| P2, allows concur-
rent processes to execute completely independently. Finally, N (exp) is a call
to a process where N is the process name and exp is an expression.

It should be noted that the syntax we present for the purpose of this
work only allows communication events between a CSP process (modelling
the controller) and a B machine (which it is controlling). CSP processes
cannot communicate between themselves apart from the possibility of syn-
chronizing when communicating with a B machine. (In general CSP||B, the
CSP processes can communicate with each other.)

For reasoning with CSP||B models we require the following notation:

• A system run σ (of a CSP||B model) of length n ≥ 0 is a finite sequence

σ = 〈s0, e0, s1, e1, . . . , en−1, sn〉

where the si , i = 0 . . . n, are states of the B machine, and the ei , 1 ≤
i ≤ n−1, are events – either controlled by CSP and enabled in B when
called, or B events. Here we assume that s0 is a state after initialisation.
Given a system run σ, we can extract its trace of events:

events(σ) = 〈e0, . . . , en−1〉.
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To demonstrate consistency of the combined CSP||B model we must
consider every sequence of events in a system run σ that correspond
to a single pass through the recursive definition of the CSP processes
and verify that the matching sequence of B operations are called within
their preconditions. In [6] we provided a general proof obligation that
characterised this notion of succesful termination for sequences of op-
erations. When this obligation is discharged for a particular CSP||B
model this verifies the divergence-freedom of the combined system. In
practice the proof obligation requires the identification of a control loop
invariant which is a predicate between the variables of the B model and
the parameters within the CSP processes and also predicates which
must hold of the B model. Proof obligations in CSP||B have also been
defined to characterise the condition for deadlock freedom [6]. In this
paper we need not concern ourselves with ensuring deadlock freedom of
the combined model since we only use events/operations which could
give rise to a deadlock in the encoding of safety in Section 3.4.

• Given a trace of events tr we define its projection to a given set A:
〈〉 � A = 〈〉; and

(〈e〉a t) � A =

{
〈e〉a (t � A) ; e ∈ A
t � A ; e /∈ A

3. Modelling Railways in CSP||B

Together with railway engineers, we have developed a common view of the
information flow in railways. In physical terms, for our purposes we consider
a railway as consisting of (at least) the four different components shown in
Figure 1.

• The Controller selects and releases routes for trains.

• The Interlocking serves as a safety mechanism with regards to the Con-
troller and, in addition, controls and monitors the Track equipment.

• The Track equipment consists of elements such as signals, points, and
track circuits. Signals can show the aspects green or red ; points can be
in normal position (leading trains straight ahead) or in reverse position
(leading trains to a different line); and track circuits detect if there is
a train on a track.
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Figure 1: Information flow.

• Finally, Trains have a driver who determines their behaviour.

For the purposes of modelling, we make the assumption that track equipment
reacts instantly and is free of defects.

The information flow shown in Figure 1 is as follows: the controller sends
a request message to the interlocking to which the interlocking responds;
the interlocking sends signalling information to the trains; and the trains
inform the interlocking about their movements. The interlocking serves as
the system’s clock: messages can be exchanged once per cycle.

In this paper, we study two example track plans, one of which is a station
illustrated in Figure 2, the other being a single junction illustrated in Fig-
ure 3. In both cases, the figures depict the scheme plans for the examples,
each comprising of a track plan, a control table, and release tables. (Scheme
plans and the various tables are provided as standard entities by the railway
industry, and it is our task to provide models which faithfully capture the
behaviour associated with these.) We explain our modelling approach here
with reference to the station example of Figure 2. In general, we adhere
closely to the established principles laid out in [11]. The track plan provides
the topological information of the station which consists of 8 tracks (e.g., the
track AA), three signals (e.g., S10), and two points (e.g., P101). Note that
the tracks include entry and exit tracks on which trains can “appear” and
“disappear”. These two kinds of tracks are specially treated during verifica-
tion.
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S10

AA(200m)

P101

AB(50m)

BC(300m)

S112

BD(200m)

AC(300m)

S12

AD(200m)

P102

AE(50m) AF(500m) Exit

Control table
Route Normal Reverse Clear

R10A P101 AA,AB ,AC ,AD
R10B P101 AA,AB ,BC ,BD
R12 P102 AD ,AE ,AF
R112 P102 BD ,AE ,AF

Release tables
P101 Occupied P102 Occupied
R10A AC R12 AF
R10B BC R112 AF

Figure 2: Station scheme plan
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AI(200m)
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AJ(50m)

AK(500m)

S16

AL(200m) AM(550m) Exit 1

BK(500m)
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BL(200m) BM(550m) Exit 2

Control table
Route Normal Reverse Clear

R10 AE ,AF ,AG
R12 AG ,AH ,AI
R14A P921 AI ,AJ ,AK ,AL
R14B P921 AI ,AJ ,BK ,BL
R16 AL,AM
R116 BL,BM

Release table
P921 Occupied

R14A AK
R14B BK

Figure 3: Single junction scheme plan
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An interlocking system gathers train locations, and sends out commands
to control signal aspects and point positions. The control table determines
how the station interlocking system sets signals and points. For each route,
there is one row describing the condition under which that route can be
granted, and hence the corresponding signal can be set to show proceed. For
example, there are two rows corresponding to signal S10: one for the main
line (Route R10A) and one for the side line (Route R10B); signal S10 for
the main line can only show proceed when point P101 is in normal (straight)
position and tracks AA, AB, AC, AD are all clear.

Note that we do not assume that trains are equipped with an Automatic
Train Protection system which prevents trains from moving over a red light;
thus overlaps are needed, e.g., the overlap for Route R10A is AD, and hence
AD is included in the clear table.

The interlocking also allocates locks on points to particular route requests
to keep them locked in position, and releases such locks when trains have
passed. For example, the setting of Route R10A obtains a lock on point
P101, and sets it to normal. The lock is released after the train has passed
the point. The release tables store the relevant track.

In this setting, we consider three safety properties:

1. collision-freedom excludes two trains occupying the same track;

2. run-through says that whenever a train enters a point, the point is set
to cater for this; e.g., when a train travels from track AD to track AE,
point P102 is set so that it connects AD and AE (and not BD and AE);

3. no-derailment says that whenever a train occupies a point, the point
doesn’t move.

The correct design for the control table and release tables is safety-critical:
mistakes can lead to a violation of any of the three safety properties.

3.1. Modelling short trains

As outlined in [2], CSP||B caters for the double nature of railways by
addressing the (control) state and data aspects separately: the interlocking
as the “data-rich” component is modelled as a single, dynamic B machine,
the Interlocking machine. It represents the centralized control logic of a rail
node, which reacts to its environment without taking any initiative. The
Interlocking machine offers to perform events in the form of operations to
the two active system components: the controller and the trains, both of
which are modelled as CSP processes.
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1 RW CTRL =
2 ur∈ROUTE (request !r?b → RW CTRL)
3 u
4 ur∈ROUTE (release!r?b → RW CTRL)
5
6 TRAIN OFF (t) = enter !t?newp → TRAIN CTRL(t ,newp)
7
8 TRAIN CTRL(t , pos) =
9 pos /∈ EXIT ∧ pos ∈ SIGNALHOMES & nextSignal !t?aspect →

10 if aspect == green
11 then
12 move!t .pos?newp → TRAIN CTRL(t ,newp)
13 u
14 stay!t .pos → TRAIN CTRL(t , pos)
15 else
16 stay!t .pos → TRAIN CTRL(t , pos)
17 u
18 move!t .pos?newp → Stop
19 2

20 pos /∈ EXIT ∧ pos /∈ SIGNALHOMES &
21 move!t .pos?newp → TRAIN CTRL(t ,newp)
22 u
23 stay!t .pos → TRAIN CTRL(t , pos)
24 2 . . .
25
26 ALL TRAINS =|||t∈TRAIN TRAIN OFF (t)
27
28 CTRL = RW CTRL ||| ALL TRAINS

Figure 4: CSP control processes for Controller and Trains.

The Trains and Controller processes run independently of each other, on
the CSP level expressed with an interleaving operator – see Figure 4 (lines 26
and 28). It is an internal decision of the controller which routes are requested
to be set or to be released (lines 2-4). Similarly, it is an internal decision of
the train (driver) to stay or to move in front of a green signal (lines 12-14)
or when there is no signal (line 21-23). If there is a red signal (lines 16-18)
then it is an internal decision of the train (driver) to stay or to overrun the
signal onto an overlap but then to stop. This dynamic operation is sometimes
referred to as the driving rules of a train.

The Interlocking machine captures information about the location of
trains on tracks using the function pos : TRAIN → ALLTRACK . The ma-
chine also captures the current information about successor tracks through a
dynamic function nextd which is dependent upon the position of the points.
Furthermore, the machine captures information about signal settings using
the function signalStatus and point settings using the sets: normalPoints
and reversePoints. Finally, the current locks on points are modelled using
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1 b ←− release(route) =
2 PRE route ∈ ROUTE THEN
3 LET emptyTracks = TRACK \ ran(pos) IN
4 IF
5 /* the signal of the route is green */
6 signalStatus(signal(route)) = green∧
7 /* points locked for the route */
8 currentLocks[route] = lockTable[route]∧
9 /* the route is clear */

10 clearTable(route) ⊆ emptyTracks∧
11 /* no train is in the track preceding the route
12 (i.e. nothing close enough to go through the red light ) */
13 homeSignal(signal(route)) ∈ emptyTracks
14 THEN
15 /* signal of route to red */
16 signalStatus(signal(route)) := red ||
17 /* release the locks associated with the route */
18 currentLocks := route −C currentLocks ||
19 /* release is successful */
20 b := yes
21 ELSE
22 b := no
23 END
24 END
25 END

Figure 5: release operation from Interlocking.

currentLocks. The initial state of the model sets all tracks to being empty,
all signals to red, all points to the normal position and no locks are made on
points. This is a safe state. This dynamic state is then updated and queried,
respectively, in the four operations of the Interlocking machine.

Figure 5 shows the full B code of a typical operation of the Interlocking
machine. It describes how a release request from the controller is processed.
The release is granted provided a number of conditions are fulfilled (the signal
of the route is green, line 6, there are points locked for the route, line 8, etc.).
In such a case, a number of state changes are made (the signal of the route
is set to red, line 16, etc.) and the controller is notified with a “yes” (line
20). Otherwise, the state does not change and the controller is notified with
a “no”.

Figure 6 shows the overall architecture of our modelling. The CSP con-
troller CTRL and the Interlocking machine are independent of any particular
scheme plan. They are supported by a Topology, a Control Table, a Release
Table, and a Context machine. These four machines encode the scheme plan
and are the parameters in our generic approach. Seen as B machines, these
four supporting machines are stateless (ie, without behaviour), and provide
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generic domain definitions.
A typical example from the ControlTable machine which splits up the

modelling of a control table into three functions would be given as follows:

normalTable ∈ ROUTE → P(POINTS ) ∧
reverseTable ∈ ROUTE → P(POINTS ) ∧

clearTable ∈ ROUTE → P(TRACK )

These three functions capture the data in the relevant columns from the
control table. The Release Table is modelled as a function

releaseTable ∈ TRACK → P(ROUTE × POINTS )

which indicates, for given track t , the route/point pairs (r , p) such that
occupancy of track t releases point p on route r . This information is drawn
directly from the release table.

As the CSP||B code is easy to read and moreover short, it is actually
possible to discuss and to validate it with railway engineers. This is espe-
cially useful for discussing the algorithms underlying the four operations of
the Interlocking machine which they confirmed to be correct. Indeed, our
industrial partners were able to contribute to the development of the model
at the CSP||B level so as to ensure it reflected real-world concerns. They
also confirmed our insight of the dual nature of railways by stating that they
actually developed and still use a programming language for interlockings
which offers primitives for manipulating both events and states.
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AA AB AC

rr ff

dr df

AD

Figure 7: A long train

To ensure consistency, the relationship between the Interlocking machine
on the one hand and the CTRL process on the other is captured by an
invariant which relates the pos function within the Interlocking machine to
the parameters t and pos of the TRAIN CTRL process. This invariant is
required to hold at each recursive call, and hence the system is divergence-
free.

3.2. Modelling long trains

Until now we have relied on the assumption that trains are shorter than
track segments. Whilst unrealistic, this assumption allows much smaller
models to be devised and, hence, analysed. Here we provide an approach
which encompasses train and track lengths, making no assumptions about
trains having to fit on track segments. For example, Figure 7 depicts a train
spanning the three tracks AA, AB and AC. Specifically, the front of the
train sits on track segment AC (ff = AC), and has a distance df ≥ 0 to the
next track segment AD; and the rear of the train sits on track segment AA
(rr = AA), and has a distance dr ≥ 0 to the next track segment AB.

This approach allows fine-grained modelling of the distances that trains
travel, as well as the times it takes to do so, and we have carried out such
studies in the context of Timed CSP [12]. However, for the purposes of this
paper – that is, verifying the safety of the rail network – we restrict attention
to an untimed model in which state changes reflect the front or rear of the
train either reaching or passing the end-points of track segments. There are
thus four variables (ff , rr , df and dr) which define the state of a train.

There are the following four situations in which a state change occurs,
depending on a partitioning of the values of the distances df and dr . (The
track segments named are in reference to Figure 7.)

(a) df =0 and dr>0. This means that the front of the train ff is at the
junction of two track segments (AC and AD) while the rear of the
train rr is wholly within a track segment (AA). In this instance an event
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moveff .t .ff .ff ′ occurs representing the front of the train moving from
track segment AC to track segment AD. The new values of the state
variables are ff ′=AD , df ′=length(AD), rr ′=rr and dr ′=dr . (Note that
this corresponds to track circuit AD changing from “no train detected”
to “train detected”.)

(b) dr>df>0. This means that the front and rear of the train are each
wholly within a track segment (the rear within AA and the front within
AC), but with the front closer to its next track segment than the rear
is to its. In this instance the state changes autonomously (ie, without
any causal event) to that in which the front of the train moves to the
end of its track segment (ie, the train moves forward a distance df ).
The new values of the state variables are ff ′=ff , df ′=0, rr ′=rr and
dr ′=dr−df .

(c) df≥0 and dr=0. This means that the rear of the train is at the junc-
tion of two track segments (AA and AB). In this instance an event
moverr .t .rr .rr ′ occurs representing the rear of the train t moving from
track segment AA to track segment AB. The new values of the state
variables are ff ′=ff , df ′=df , rr ′=AB and dr ′=length(AB). (Note that
this corresponds to track circuit AA changing from “train detected” to
“no train detected”.)

In the case df = dr = 0, we could have instead chosen to model this as
internal non-deterministic choice between events moverr .t .rr .rr ′ and
moveff .t .ff .ff ′. However, as we are dealing with sets of traces, the
encoding as presented is sufficient for safety analysis.

(d) df≥dr>0. This means that the front and rear of the train are each
wholly within a track segment (the rear within AA and the front within
AC), but with the rear at least as close to its next track segment as the
front is to its. In this instance the state changes autonomously to that
in which the rear of the train moves to the end of its track segment (ie,
the train moves forward a distance dr). The new values of the state
variables are ff ′=ff , df ′=df−dr , rr ′=rr and dr ′=0.

As a note, in a finer-grained model cases (b) and (d) above – where nei-
ther end of the train is on an end-point of a track segment – would repre-
sent states where time elapses, allowing the train to move along a distance
d<min(df , dr), updating the state variables to be ff ′=ff , df ′=df−d , rr ′=rr
and dr ′=dr−d .
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3.3. Signals and Overlaps

Unlike in [3], we do not assume here the presence of Automatic Train
Protection (ATP) preventing trains from overrunning red signals. Rather,
we use the more realistic assumption that trains may overrun a red light but
in such instances will stop on the next track segment.

This being the case, the control table will (be expected to) stipulate that
a track section immediately following a signal (an overlap section) will be
protected by the signal preceding the one at the start of the section. As
we are modelling “open” networks (ie, with entry and exit tracks), our B
model will allow a train to enter an entry track only if the entry track and
its overlap track are both clear.

A moveff event will be enabled in the first two situations above, that is if
(a) dr>df =0 or (b) dr>df>0; whereas a moverr event will be enabled in the
latter two situations, that is if (c) df≥dr=0, or (d) df≥dr>0. The driving
rules encoded into our model are then as follows:

(i) in front of a red signal, the train may either stay put, or it may overrun
by one track and then stop;

(ii) in front of a green signal, the train may either move or it may stay put.

The behaviour of the train will only be dependent on signals in situation (a),
and be modelled in CSP as follows.

1 if aspect == green
2 then
3 moveff !t .ff ?ff ′ → TRAIN CTRL(t ,ff ′, length(ff ′), rr , dr)
4 u
5 stay.t → TRAIN CTRL(t ,ff , df , rr , dr)
6 else (∗ aspect == red ∗)
7 stay.t → TRAIN CTRL(t ,ff , df , rr , dr)
8 u
9 moveff .t .ff .ff ′ → Stop

3.4. Encoding safety

We describe here how the three safety properties are encoded in our B
machine. Firstly, a collision is encoded as follows.

1 collision =
2 SELECT
3 ∃ t1, t2 ∈ TRAIN : t1 6= t2 ∧ (ran(pos(t1)) ∩ ran(pos(t2))) \ (EXIT ∪ ENTRY ) 6= ∅
4 THEN skip
5 END;
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Here collision is detected when two different trains t1 and t2 occupy the
same track segment (different from the EXIT and ENTRY tracks). This is
recognised in the pos function which maps trains to the track segments they
occupy; the collision condition will be enabled when the ranges of the pos
functions of the two trains have a nonempty intersection.

Next, run-through is modelled as follows.

1 runthrough =
2 SELECT ∃ t ∈ TRAIN ∧ t ∈ dom(pos) ∧ nullTrack ∈ ran(pos(t))
3 THEN skip
4 END;

Here run-through is detected when a train t occupies nullTrack which is a
special track segment introduced in our CSP model onto which a train is sent
when it travels over an incorrectly-set point.

Finally, derailment is modelled as follows.

1 derailment =
2 SELECT ran(union(ran(pos))) ∩ homePoints[movedPoints] 6= ∅
3 THEN skip
4 END;

Here derailment is detected when the set of track segments currently occupied
by trains includes segments which are associated with points that have moved
while the trains have been on these segments.

In order to mirror these B events on the CSP level, we add a process that
enables these events at all times:

1 ERR = (collision → ERR) 2 (runthrough → ERR) 2 (derailment → ERR)

The complete CSP||B models for both case studies can be downloaded
from http://www.cs.swan.ac.uk/RAIL/Models/CSPB.

4. Finitisation

In the following, we develop a theory of how to reduce the problem of
verifying our CSP||B models of scheme plans for safety (i.e., freedom from
collision, derailment, and run-through) to that of the two-train scenario.
Given a scheme plan SP , and an unlimited collection TRAIN of trains with
a function length : TRAIN → N that assigns a length to each train, we write
CSP||B(SP ,TRAIN ) for the instantiation of our generic CSP||B model with
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SP and TRAIN . Note that in general CSP||B(SP ,TRAIN ) is an infinite
state system due to the inclusion of train identifiers into events and states.
Naturally, in railway practice there are only finitely many train lengths in
use. We call our theory “finitisation”, as it reduces the safety problem over
an infinite state system to a safety problem over a finite state system, namely
to CSP||B(SP ,TRAIN ) where the set TRAIN contains two elements only.

Finitisation requires scheme plans to fulfil a number of well-formedness
conditions as outlined in Section 4.1. For well-formed scheme plans we es-
tablish in Section 4.2 a reduction theorem (Theorem 3) w.r.t. the number of
trains involved in a system run. All these conditions are straightforward to
check statically. If we are only interested in the movements of a finite set
of trains in a given system run – say in the movements of two trains which
collide in this system run – then we can define a new system run with “ex-
actly the same movements” for just this selected set of trains. Finitisation
works for well-formed scheme plans as it is possible to simulate the influence
that one train can have on other trains by suitable route request and route
release commands. The validity of this finitisation argument for safety is
demonstrated in Section 4.3.

4.1. Well-formedness conditions

In our modelling approach, track plans are encoded in the Context and
in the Topology machines in B. In these machines, tracks are collected in a
set TRACK with special sets ENTRY , EXIT ⊆ TRACK for the entry and
exit tracks. Signals are collected in a set SIGNAL; homeSignal : SIGNAL→
TRACK defines the unique track at which a signal is placed; and the con-
nectivity is given by a relation next ⊆ TRACK ×TRACK . One can see this
structure as a directed graph (TRACK , next) with signals as labels on the
nodes. With this notation, we define the concept of a topological route as
a path through this graph, which begins after a signal and ends either with
the track after the next signal or before an exit track.

Definition 1. A topological route is a path R = 〈t1, . . . , tk〉 ∈ TRACK+,
k ≥ 1, in the graph (TRACK , next) such that the following holds:

• there is a signal s ∈ SIGNAL and a track t ∈ TRACK such that
homeSignal(s) = t and (t , t1) ∈ next, and

• either there is a signal s ∈ SIGNAL such that homeSignal(s) = tk−1
and for all 1 ≤ i ≤ k−2 and s ∈ SIGNAL: homeSignal(s) 6= ti ;
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or there is a track t ∈ EXIT such that (tk , t) ∈ next and for all 1 ≤
i ≤ k and s ∈ SIGNAL: homeSignal(s) 6= ti .

A track t belongs to a topological route R, written as t ∈ R, iff t = ti for
some 1 ≤ i ≤ k. TopoRoute denotes the set of all topological routes of a
track plan.

In Figure 2, the path 〈AA,AB ,AC ,AD〉 is a topological route from
the first track after signal S10 to the first track after signal S12; the path
〈AD ,AE ,AF 〉 is a topological route from signal S10 to the track just before
the exit track Exit .

When designing a scheme plan, the signalling engineer selects and names
some of the topological routes and develops control and release tables for
them, i.e., there is a set ROUTE of route names and an injective map topo :
ROUTE → TopoRoute which assigns a topological route to each route name.

Definition 2. A scheme plan is well-formed if the following conditions hold:

1. (Release-Table condition) Locks of a route can only be released by a
train movement on that route:

∀ r ∈ ROUTE , p ∈ POINT , t ∈ TRACK :

(r , p) ∈ releaseTable(t)⇒ t ∈ topo(r)

2. (Clear-Table condition) The clear table of a route contains at least the
tracks of this route:

∀ r ∈ ROUTE : {t | t ∈ topo(r)} ⊆ clearTable(r)

3. (Normal/Reverse-Table condition) Every point on a route is in either
the normal table or the reverse table of that route (and not both):

∀ r ∈ ROUTE : {p ∈ POINT | homePoint(p) ∈ topo(r)}
⊆ normalTable(r) ∪ reverseTable(r)

∧ normalTable(r) ∩ reverseTable(r) = ∅
Here, homePoint(p) depicts the track circuit name of point p.

4. (Route condition) Topologically different routes that share some points
are distinguishable by at least one point position of these shared points:
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∀ r1, r2 ∈ ROUTE : r1 6= r2 ∧ sharedPoints(r1, r2) 6= ∅ ⇒
(∃ p ∈ sharedPoints(r1, r2) :

(p ∈ reverseTable(r1) ∧ p ∈ normalTable(r2)) ∨
(p ∈ reverseTable(r2) ∧ p ∈ normalTable(r1)))

Here, sharedPoints(r1, r2) depicts the points on both routes r1 and r2.

The above conditions ensure a minimal consistency between the signalling
of routes in the control and release tables on the one hand, and their topolog-
ical extent as defined by the railway topology on the other hand. As demon-
strated by the following example, however, this consistency is not enough to
ensure safety.

Example 1. Consider the following changes to the control table of the scheme
plan shown in Figure 2: for route R10A set point P101 to be “reverse”
rather than “normal”, for route R10B set point P101 to be “normal” rather
than “reverse”. In this changed setting all four conditions are fulfilled. The
changed scheme plan however is not safe as trains can collide on track BC :
Let there be no train in the beginning. Then route R10A can be set, and a
train can travel from Entry over AA and AB to BC and stay on track BC .
As BC is not in the clear part of route R10A, and there are no trains on
the track named in the clear part of R10A, route R10A can be set again, and
another train can travel along the same way. This second train will collide
with the first one on track BC .

4.2. A reduction theory

We start the development of our reduction theory with a simple obser-
vation on our CSP||B models. If a signal shows green in a state of a system
run, then there exists a uniquely determined route for which in the past a
route request must have been granted by the interlocking.

Theorem 1. Let σ be a system run of CSP||B(SP ,TRAIN ) for a scheme
plan SP and a set of trains TRAIN . Then the following holds for all signals
sig ∈ SIGNAL : prior to a state in which sig shows green, there is a uniquely
determined event request .r .yes, r ∈ ROUTE , in σ that caused the signal to
become green. We sometimes speak of the uniquely determined route r that
has been granted.

Proof. By definition of the B machine Interlocking , a signal is set to green
only by the event request (when a route is successfully requested). Conversely,
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a signal is set to red only by the events moveff and release (when a train
passes a signal and when a route is released successfully).

Let Sn , n ≥ 0, be a state of σ in which sig is green. Then, prior to Sn ,
there must have been a last successful request to one of the routes r with
signal(r) = s (in S0, all signals show red). Moreover, after this request no
train can have passed sig and there cannot have been a successful attempt
to release r . Thus, the system run σ up to state Sn has the following form:

S0, e0, S1, . . . , Sk−1, request .r .yes , Sk , ek , . . . . . . . . . . . . . . . , en ,︸ ︷︷ ︸
ei 6= moveff .id .tsig .nsig ,
ei 6= release.r .yes

Sn

where signalStatusSn (sig) = green (ie, the signal sig in the final state Sn is
green), signalHome(sig) = tsig , (tsig , nsig) ∈ next , and id is a train iden-
tifier. Furthermore, any event between ek and en inclusively cannot be
request .r ′.yes for a route r ′ ∈ ROUTE with signal(r ′) = sig . This is the
case, as one condition in request .r ′.yes at state Si (where k < i < n) re-
quires signalStatusSi (sig) = red . Hence, no other route which shares this
signal is set from Sk to Sn .

In the following we show that given a set X of trains which do not cause
collisions, derailments or run-throughs (in a precisely defined sense): for
every system run σ, there exists a system run σ′ involving only the trains
not in X in which these trains move as dictated by σ. In particular: if trains
collide in σ then they collide in σ′; if a train derails in σ, then it derails in
σ′; and if a train has a run-through in σ, then it has a run-through in σ′.

We obtain σ′ constructively by defining a replacement function on events.
To this end, we first identify those events which are related to the trains in
the set X :

Definition 3. Given a set X of train identifiers, we define the events of X
(as introduced in our model) as

E (X ) = {enter .b | b ∈ X } ∪
{exit .b | b ∈ X } ∪
{nextSignal .b | b ∈ X } ∪
{moveff .b.cp.np | b ∈ X ∧ cp, np ∈ ALLTRACK} ∪
{moverr .b.cp.np | b ∈ X ∧ cp, np ∈ ALLTRACK}
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The next step is to define the replacement function replaceX for a given
set of trains X . This function is dependent on the current state S as well as
the event e being replaced:

replaceX (S , e) =



e e /∈ E (X )
release.r .yes e = moveff .b.cp.np ∧

∃ s ∈ SIGNAL : homeSignal(s) = cp ∧
signalStatusS (s) = green ∧
signal(r) = s ∧
currentLocksS (r) = lockTable(r)

idle otherwise

In the context of a system run, Theorem 1 ensures that this function is well-
defined, as it guarantees the uniqueness of the route r to be released in the
second clause.

In order to cater for this model transformation, which introduced the
new event idle, we add the following CSP process IDLE in interleaving to
our CSP controller:

1 IDLE = (idle → IDLE)

This process is only needed for the justification of our model transforma-
tions, however, left out in proof practice without losing the correctness of
the argument.

Removing the trains in the set X from a system run also effects the
states of the B machine. For example, one component of a B machine state
S is the map posS : TRAIN → ALLTRACK+, which stores for each train
the sequence of tracks it occupies. If we now remove the trains in X , we
would hope that for the corresponding state T the following relation holds:
posT = posS \ X × ALLTRACK+. In general, this correspondence between
states is not only a projection on the remaining trains. We define:

Definition 4. Let S and T be states of the B machine of CSP||B(SP ,TRAINS ),
let X ⊆ TRAINS be a set of trains. State T is in X -correspondence to state
S, written T ≤X S , iff the following nine conditions are fulfilled:
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posT = posS \ X × ALLTRACK+ (1)

nextdT = nextdS (2)

signalStatusT = signalStatusS (3)

normalPointsT = normalPointsS (4)

reversePointsT = reversePointsS (5)

movedPointsT = movedPointsS (6)(
currentLocksT [{r}] = currentLocksS [{r}] ∨
currentLocksT [{r}] = ∅

)
for all r ∈ ROUTE (7)

∀ s ∈ SIGNAL : if signalStatusS (s) = green then

∃!r ∈ ROUTE : signal(r) = s ∧
currentLocksS (r) = lockTable(r) ∧
currentLocksT (r) = lockTable(r) (8)

∀ b ∈ X , ∀ t ∈ posS (b), ∀ r ∈ ROUTE :

if t ∈ topo(r) then currentLocksT (r) = ∅ (9)

Condition (1) is as expected: the trains in the set X have been removed.
Conditions (2) to (6) state that point positions and signal aspects are iden-
tical. Condition (7) states that the run without the trains in the set X :

• either has the same locks for a route – reflecting the fact that when
a route is set, the locks are the same regardless of the set of trains
involved;

• or no locks at all – reflecting the idea that if in S there is a train
travelling on a route r , and this train is removed, then we release the
route resulting in an empty set of locks.

Condition (8) stipulates that if a signal is green, there exists a unique route
associated with the signal which is set. Finally, condition (9) says that the
locks of any route that contains a track segment occupied by a train b ∈ X
in state S have been released in state T . It ensure that any route request in
S is also possible in T . More specifically:
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• if a train b is travelling on a route r and b is removed, then the locks
of r must be empty, as we release r at the earliest convenience; and

• no other route makes use of the freed resources.

We want to establish the following simulation property: given a state S
and a state T with T ≤X S , and an event e that is enabled in S leading
to a state S ′, the event replaceX (S , e) is enabled in T and leads to a state
T ′ ≤X S ′. The following diagram illustrates this situation:

T ≤X S
replaceX (S ,e) ↓ ↓ e

T ′ ≤X S ′

We establish this simulation property in the following lemma.

Lemma 1. Given a scheme plan SP, a set of trains TRAIN , a subset of
trains X ⊆ TRAIN and a system run

σ = 〈S0, e1, S1, . . . , ek , Sk〉

of CSP||B(SP ,TRAIN ) where trains in X do not cause collision, then there
is a well-defined system run

replaceX (σ) = 〈T0, replaceX (S0, e1),T1, . . . , replaceX (Sk−1, ek),Tk〉

of the B machine of CSP||B(SP ,TRAIN \X ) in which Ti ≤X Si for each i.

Proof. The proof is by induction on the length of σ. The base case is triv-
ial, and the induction cases are generally unproblematic, with each case (ie,
possible event) demonstrating that replaceX (Si−1, ei) is enabled in Ti−1 and
leads to a Ti with Ti ≤ Si .

The condition that the trains in X do not cause collision is necessary in
the proof step regarding movement of trains in X when they pass a signal. In
the simulation, we replace the move event moveff .x .ff .nextff (where x ∈ X ,
ff is a track in front of a signal) with a release.r .yes event (where r is the
route of this signal). One of the preconditions of the release event is that
there is no train on the track in front of the signal. When now x is removed,
this condition may be false should there still be another train which was
colliding with train x .

Due to the sheer number of cases to consider, the proof is relegated
to Appendix A.
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With this result in place, we consider what conditions guarantee that
events(replaceX (σ)) will be a trace of the CSP controller:

Lemma 2. Given a scheme plan SP, a set of trains TRAIN , a subset of
trains X ⊆ TRAIN and a system run σ of CSP||B(SP ,TRAIN ), the trace
events(replaceX (σ)) will be a trace of the CSP controller CTRL(SP ,TRAIN \
X ).

Proof. Let σ be a system run of CSP||B(SP ,TRAIN ) and let σ′ = replaceX (σ).
As σ is a system run, events(σ) is a trace of CTRL(SP ,TRAIN ). Recall that

CTRL(SP ,TRAIN ) = RW (SP) ||| TRAIN CTRL(TRAIN ) |||
ERR ||| IDLE

TRAIN CTRL(TRAIN ) = |||
i∈TRAIN

TRAIN OFF (i)

By looking at the definitions of the processes RW ( ), TRAIN CTRL( ),
ERR and IDLE , we can note that their alphabets are disjoint; we can thus
analyze the situation for the trace events(σ′) by projection onto these alpha-
bets.

First note that for the original trace we have that events(σ) � E ({i}) ∈
traces(TRAIN OFF (i)) for all i ∈ TRAIN . Here, E ({i}) is the set of events
associated with train i , see Definition 3, and � is the projection function
defined in Section 2. With this result we obtain

• for each train b ∈ X ,
events(σ′) � E ({b}) = 〈〉 ⊆ traces(TRAIN OFF (b))
since we replace all events related to b ∈ X ; and

• for each train a /∈ X ,
events(σ′) � E ({a}) = events(σ) � E ({a}) ∈ traces(TRAIN OFF (a))
since we keep all events related to a /∈ X .

From the definitions of RW (SP),ERROR and IDLE , it follows directly
that

• events(σ′) � {| request , release |} ∈ traces(RW (SP)) and

• events(σ′) � {| collision, derailment , runthrough |} ∈ traces(RW (SP)).

Therefore, events(σ′) ∈ CTRL(SP ,TRAIN \ X ).
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Combining our two lemmas results in the following theorem.

Theorem 2. Given a scheme plan SP, a set of trains TRAIN , a subset
of trains X ⊆ TRAIN and a system run σ of CSP||B(SP ,TRAIN ) where
trains in X do not cause collision, then replaceX (σ) is a system run of
CSP||B(SP ,TRAIN \ X ).

Proof. Let σ be a system run of CSP||B(SP ,TRAIN ). By Lemma 1 we know
that replaceX (σ) is a run of the B machine M of CSP||B(SP ,TRAIN \X ), and
we especially have events(replaceX (σ)) ∈ traces(M ). By Lemma 2 we know
that replaceX (σ) ∈ tracesCTRL(SP ,TRAIN ). Thus, by definition of the
semantics of CSP||B, replaceX (σ) is a system run of CSP||B(SP ,TRAIN \X ).

4.3. Verification for safety

Our verification approach for CSP||B is to use model checking with ProB,
where we check that in a given model a specific error event does not happen,
i.e., it is never enabled.

Safety in the models with long trains is dependent on the train length
involved, which motivates the following definition.

Definition 5. Let ERROR = {collision, derailment , runthrough} be the set
of error events of interest, and L ⊆ N be a set of possible train lengths.

1. For n ∈ N>0 and e ∈ ERROR, a scheme plan SP is (n,L) e-free iff
e is not enabled in any state of any σ ∈ CSP||B(SP ,TRAIN ) in which
|TRAIN | = n and {length(t) | t ∈ TRAIN } = L.

2. A scheme plan SP is L-safe iff SP is (n,L) e-free for all n ∈ N>0 and
and e ∈ ERROR.

Note that our definition of (n,L) e-free requires that 1 ≤ |L| ≤ n.
We can now turn Theorem 2 into a proof method. The following Corollary

is the basis of the main theoretical result of this paper.

Corollary 1. Let L ⊆ N be a set of possible train lengths. If a scheme plan
SP is

1. (2,L′) collision-free for all L′ ⊆ L, 1 ≤ |L′| ≤ 2, and

2. (1,L′) derailment-free for all L′ ⊆ L, |L′| = 1, and

3. (1,L′) run-through-free for all L′ ⊆ L, |L′| = 1,
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then SP is L-safe.

Proof. Assume that SP is not L-safe. This means there exists n ∈ N>0

and err ∈ ERROR such that SP is not (n,L) err -free. That is, there is a
non-empty collection of runs of CSP||B(SP ,TRAIN ) in which some error is
enabled in some state of each of these runs. A shortest such run will be of
the form

σ = 〈S0, e1, S1, . . . , ek , Sk〉

in which

an error e is enabled in Sk (10)

no error is enabled in S0, . . . , Sk−1 (11)

Case 1: e = collision.

(10) ⇒ ∃ t1, t2 ∈ TRAIN , t ∈ TRACK : t ∈ posSk
(t1) ∧ t ∈ posSk

(t2)

⇒ ek is a moveff of t1 or t2 by (11)

⇒ replaceTRAIN\{t1,t2}(σ) is a run of CSP||B(SP , {t1, t2})
by Theorem 2, as trains in TRAIN \ {t1, t2} do not

cause collision in σ

⇒ Tk ≤TRAIN\{t1,t2} Sk

where Tk is the last state in replaceTRAIN\{t1,t2}(σ)

⇒ t ∈ posTk
(t1) ∧ t ∈ posTk

(t2)

⇒ collision is enabled inTk

⇒ SP is not (2, {length(t1), length(t2)}) collision-free
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Case 2: e = derailment .

(10) ⇒ ∃ t ∈ TRAIN , p ∈ movedPointsSk
: homePoint(p) ∈ posSk

(t)

⇒ ek is a request .r .yes by (11)

⇒ replaceTRAIN\{t}(σ) is a run of CSP||B(SP , {t})
by Theorem 2, as trains in TRAIN \ {t} do not

cause collision in σ

⇒ Tk ≤TRAIN\{t} Sk

where Tk is the last state in replaceTRAIN\{t}(σ)

⇒ p ∈ movedPointTk
∧ homePoint(p) ∈ posTk

(t)

⇒ derailment is enabled inTk

⇒ SP is not (1, {length(t)}) derailment-free

Case 3: e = run-through.

(10) ⇒ ∃ t ∈ TRAIN : nullTrack ∈ posSk
(t)

⇒ ek is a moveff of t by (11)

⇒ replaceTRAIN\{t}(σ) is a run of CSP||B(SP , {t})
by Theorem 2, as trains in TRAIN \ {t} do not

cause collision in σ

⇒ Tk ≤TRAIN\{t} Sk

where Tk is the last state in replaceTRAIN\{t}(σ)

⇒ nullTrack ∈ posTk
(t)

⇒ run-through is enabled inTk

⇒ SP is not (1, {length(t)}) run-through-free

Corollary 1 works with different numbers of trains: two trains are needed
in the case of collision, one train is needed otherwise. In order to be able to
check safety for all three properties in one go, we prove the following.
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Theorem 3. If a scheme plan SP is (n,L) e-free then SP is (n ′,L′) e-free
for n ′ < n and L′ ⊆ L.

Proof. Assume by way of contradiction that SP is not (n ′,L′) e-safe. Then
there exists a run σ ∈ CSP||B(SP ,TRAIN ′), |TRAIN ′| = n ′, such that e is
enabled in some state of σ. Then, σ is also a run of CSP||B(SP ,TRAIN ),
TRAIN ′ ⊆ TRAIN , |TRAIN | = n and L′ ⊆ L = {length(t) | t ∈ TRAIN }.

5. Experimental results

In this section we outline various experimental results carried out on our
models. We used the ProB tool to check the validity of the following CTL
formula:

AG(not(e(collision) ∨ e(runthrough) ∨ e(derailment)))

This formula is false if one of our ERROR events is enabled. In the CTL
variant of ProB AG stands for “on all paths it is globally true”, e(a) stands
for the enabledness of the event a.

5.1. Demonstration of errors

In order to demonstrate possible errors in a scheme plan, we provide two
counterexamples from the verification of the Station case study, presented in
Figure 2, where the control table is deliberately changed to contain errors.
In these cases, counterexamples are provided by ProB in terms of traces
which contain an event from {collision, derailment , run-through}.

Example 2. In the first experiment, we swap the position of point P101 for
routes R10A (to reverse) and R10B (to normal) - like in Example 1 above.
For this, ProB provides the following counterexample:

〈enter .albert .Entry, request .R10A.yes, nextSignal .albert .green,
moveff .albert .Entry .AA, moverr .albert .Entry .AA, moveff .albert .AA.AB,
moveff .albert .AB .BC , moverr .albert .AA.AB, moverr .albert .AB .BC ,
enter .bertie.Entry, request .R10A.yes, nextSignal .bertie.green,
moveff .bertie.Entry .AA, moverr .bertie.Entry .AA, moveff .bertie.AA.AB,
moveff .bertie.AB .BC , collision〉
which illustrates a collision caused by albert and bertie at BC .
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Example 3. In the second experiment, we swap the position of point P102
for routes R12 (to reverse) and R112 (to normal). For this, ProB provides
the following counterexample:

〈enter .albert .Entry, request .R10A.yes, nextSignal .albert .green,
moveff .albert .Entry .AA, moverr .albert .Entry .AA, moveff .albert .AA.AB,
moveff .albert .AB .AC , moverr .albert .AA.AB, moverr .albert .AB .AC ,
request .R12.yes, moveff .albert .AC .AD, moverr .albert .AC .AD,
moveff .albert .AD .nullTrack, run-through〉
which illustrates a run-through caused by albert.

5.2. Verification of the case studies

In this section we report on the verification results for safety of the single
junction and station case studies. The experiments were carried out us-
ing ProB 1.3.6-final [13] to verify the collision, run-through and derailment
freedom using CTL model checking over the CSP||B models. The models are
built using our modelling approach as described in Section 3 where train and
track lengths are taken into account. Thanks to the finitisation technique
developed in Section 4, the CSP||B model of each case study requires only
two trains for the verification of safety. In our example, we assume that
train lengths can be either 40m (i.e., consisting of two coaches, each being
20m long) or 200m (i.e., consisting of ten coaches). To this end, for each case
study, we performed three experiments which cover all possible combinations
of train lengths from {40m, 200m}. The experiments were conducted on a

Plan Train Length States ≈ Transitions ≈ Size Time

Station 40m, 40m 9093 88702 186.5 MB 1m 22s
40m, 200m 8931 78626 182.1 MB 1m 20s
200m, 200m 8769 78596 181.7 MB 1m 19s

Junction 40m, 40m 64733 896812 612.3 MB 15m 13s
40m, 200m 64285 897052 611.1 MB 15m 10s
200m, 200m 63837 883000 604.6 MB 15m 04s

Figure 8: Verification results of the Station and the Single Junction.

PC with a quad-core 3.2GHz CPU and 8GB memory. The results are sum-
marised in Figure 8 where for each experiment of a train length combination
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we report the number of states in the state space, the number of transitions
in the state space, the size of used memory and the total running time.

Figure 9 shows the verification results for the same case studies without
modelling lengths. In these experiments, we consider two trains in the CSP||B

Plan States ≈ Transitions ≈ Size Time

Station 6185 63508 176.8 MB 54.7s

Junction 51961 751225 606.2 MB 11m 36s

Figure 9: Verification results without lengths.

models of the Station and the Single Junction case studies. Since train and
track lengths are not included in the CSP||B models, only one experiment
is carried out for each case study. These results show that the sizes of the
CSP||B models increase when we take lengths of trains and tracks into account
in our modelling approach.

6. Related work

The railway interlocking problem has long been studied by the Formal
Methods community, and our work builds upon prior approaches to the mod-
elling and verification of railways. Prominent studies from the B community
include [14, 15] whilst [16, 17] are classical contributions from process algebra
and [18] uses techniques from Algebraic Specification. On a lower abstraction
layer, [19, 20, 21, 22] verify the safety of interlocking programs with logical
approaches.

6.1. Modelling comparison

Our modelling is most related to Winter’s approach in CSP [23] and
Abrial’s modelling in Event-B [24]. In the following we briefly discuss their
respective approaches and the manner in which we consider our approach
to succeed in combining the successful aspects of these whilst avoiding their
perceived deficiencies.

Winter [23] presents a generic, event-based railway model in CSP as well as
generic formulations of two safety properties: CollisionFreedom and NoMov-
ingPoints. Overall, this results in a generic architecture and a natural rep-
resentation of two safety properties. Traceability, however, is limited. There
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are relations in the model which are derived from the control table. For
example, the driving rule “trains stop at a red signal” is distributed over
different parts of the model: it is a consequence of the fact that (1) the
event “move to the first track protected by a signal” belongs to a specific
synchronziation set and (2) a red signal does not offer this event. Purely
event-based modelling leads to such decentralized control. Consequently, the
model has no interlocking cycle.

Chapter 17 of the book by Abrial [24] gives an excellent detailed de-
scription and analysis of the railway domain, deriving a total of 39 different
requirements. The modelling approach is generic, even though no concrete
model is proven to be correct. Traceability in a tower of specifications can
be complex for various reasons. For instance, a requirement can be the con-
sequence of invariants from different levels. The relation between intended
properties and the model remains an informal one. This is in contrast to
other approaches (including Winter’s and our own) which directly represent
the intended property in the formal world and then prove that the modelled
property is a mathematical consequence of the formal model. Furthermore,
the approach is monolithic: behaviour is not attached to different entities to
which they relate.

Winter et al. [7] allows a train to occupy two track segments, which is
a concession to the assumption made elsewhere (including in our previous
studies) that a train can only occupy one track segment. However, we noted
in [2] that even this concession is too restrictive to be realistic. It is one of
the novelties of our approach here that this assumption is discharged. The
other novelty is the discharging of the assumption that only a very few trains
may enter the network. This assumption is traditionally used to keep the
state space of the analyses under control, with tools being stretched to allow
the possibility of ever more trains running through the network. Using our
approach, this assumption is no longer required, at least for safety analysis.

Finally worth noting, Haxthausen et al. [25] take a different approach to
modelling arbitrary numbers of trains and allowing trains occupying an arbi-
trary number of track segments. In particular, in their approach sensors are
incorporated into the network along with points, signals and track segments;
and virtual counters are associated with each sensor which keep count of the
number of trains that pass the sensor. Safety violations are then expressed
in terms of these counter values.
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6.2. Verification comparison

The focus of our paper has been on safety verification using model check-
ing in ProB. Model checking is becoming more recognised as an industrial
technique [26] and therefore it is important to discuss it in the context of
scalability. Ferrari et al. [19] state that model checking large interlocking
systems is unfeasible with current state-of-the-art model checkers, in par-
ticular SPIN and NuSMV. However, James et al. [21] demonstrate positive
results on the feasibility of the lower level approach involving program slic-
ing. Also, Cimatti et al. [22] have demonstrated considerable success using
NuSMV on industrial scale problems, though they do not address large inter-
locking systems but rather rather the integration of a (moderately complex)
interlocking system with a train spacing system (ERTMS). A detailed com-
parison with these approaches is not appropriate since our approach is at a
higher level of abstraction. The justification for this higher level of abstrac-
tion is that the industrial partners wish to have feedback on interlocking
systems already during the design stage.

7. Conclusion and future work

Through our association with Invensys Rail, we are working towards de-
riving railway models which are formal and analysable by current verification
technologies, yet are fully faithful; we do not want to hide the engineering
understandings held by our industrial partners in clever abstract encodings.
Despite being expressed in the mathematical language of formal methods,
our models must be immediately understandable — and verifiable — by our
industrial partners.

This has proven to be a challenge, as we find that the extant approaches
to railway modelling have been hindered in this respect by the framework
in which they have been carried out. As explained above, modelling in the
railway domain involves event-based components as well as state-based com-
ponents. Using a solely-event-based framework or a solely-state-based frame-
work succeeds in faithfully representing the relevant components, yet suffers
in representing other components through encodings which — whilst clever
feats of abstract modelling — are not easily appreciated by the working rail-
way engineer.

Beyond the challenge of faithfully modelling railway systems, we have
devised abstraction techniques that yield an effective and efficient verification
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process based on model checking. In particular, we illustrated this process
in terms of various scenarios.

Acknowledgement:. The authors would like to thank S. Chadwick and D. Tay-
lor from Invensys Rail for their support and encouraging feedback.
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Appendix A. Proof of Lemma 1

Base case:

It requires to shows that T0 ≤X S0. After initialisation, we have

posX = ∅
nextdX = staticNext ∪ dynamicNext [POINT × {normal}]
signalStatusX = SIGNAL× {red}
normalPointsX = POINT
reversePointsX = ∅
movedPointsX = ∅
currentLocksX = ∅

for any X ∈ {T0, S0}. Hence, it is straightforward that T0 ≤X S0.

Induction step:

Assume that T ≤X S and S e S ′. We have to show that e ′ = replaceX (e)
is enabled in T and T e ′ T ′ implies that T ′ ≤X S ′. This is done by consid-
ering all possible cases of e (as outlined in the model).

• Case e = moveff .x .cp.np and x /∈ X , then e ′ = moveff .x .cp.np.

e ′ is enabled in T :

e is enabled in S ⇒ x ∈ dom(posS ) ∧
cp = first(posS (x ))

⇒ x ∈ dom(posT ) ∧ by (1) and x /∈ X
cp = first(posT (x )) by (1) and x /∈ X

⇒ e ′ is enabled in T

T ′ ≤ S ′: Since e and e ′ only change pos(x ) signalStatus(s) (if homeSignal(s) =
cp), and movedPoints , we only show (1), (3)and(6):

posT ′(x ) = 〈np〉a posT (x ) by moveff .x .cp.np

= 〈np〉a posS (x ) by (1) and x /∈ X
= posS ′(x ) by moveff .x .cp.np

signalStatusT ′(s) = red if cp = homeSignal(s)
= signalStatusS ′(s) by moveff .x .cp.np
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movedPointsT ′ = ∅ by moveff .x .cp.np
= movedPointsS ′(s) by moveff .x .cp.np

• Case e = moveff .x .cp.np, x ∈ X , and cp /∈ ran(homeSignal), then e ′ =
idle.

e ′ is trivially enabled in T .

T ′ ≤ S ′: Since e and e ′ only change pos(x ) and movedPoints , we only
show (1)and(6):

posT ′ = posT by idle
= posS \ X × ALLTRACK+ by (1)

= posS \ {x} × ALLTRACK+ ∪ {x 7→ 〈np〉a posS (x )}\
X × ALLTRACK+ by moveff .x .cp.np

= posS ′(x ) \ X × ALLTRACK+ since x ∈ X

movedPointsT ′ = ∅ by idle
= movedPointsS ′(s) by moveff .x .cp.np

• Case e = moveff .x .cp.np, x ∈ X , and cp = homeSignal(s), for some s ∈
SIGNAL and statusSignalS (s) = red , then e ′ = idle.

e ′ is trivially enabled in T .

T ′ ≤ S ′: Since e and e ′ only change pos(x ) and movedPoints , we only
show (1)and(6):

posT ′ = posT by idle
= posS \ X × ALLTRACK+ by (1)

= posS \ {x} × ALLTRACK+ ∪ {x 7→ 〈np〉a posS (x )}\
X × ALLTRACK+ by moveff .x .cp.np

= posS ′(x ) \ X × ALLTRACK+ since x ∈ X

movedPointsT ′ = ∅ by idle
= movedPointsS ′(s) by moveff .x .cp.np

• Case e = moveff .x .cp.np, x ∈ X , and cp = homeSignal(s), for some s ∈
SIGNAL such that signalStatusS (s) = green, then e ′ = release.r .yes
where r is uniquely determined by (8).
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e ′ is enabled in T since:

signalStatusT (s) = signalStatusS (s) by (3)
= green

currentLocksT (r) = lockTable(r) by (8)
homeSignal(s) ∈ emtpyTracksT

as (1) and x ∈ X (no collision)
imply only x occupies homeSignal(s)

T ′ ≤ S ′: Since e and e ′ only change pos(x ) signalStatus(s), and
movedPoints , we only show (1), (3) and (6):

posT ′ = posT by release.r .yes
= posS \ X × ALLTRACK+ by (1)

= posS \ {x} × ALLTRACK+ ∪ {x 7→ 〈np〉a posS (x )}\
X × ALLTRACK+ by moveff .x .cp.np

= posS ′(x ) \ X × ALLTRACK+ since x ∈ X

signalStatusT ′(s) = red = signalStatusS ′(s) by moveff .x .cp.np

movedPointsT ′ = ∅ by release.r .yes
= movedPointsS ′(s) by moveff .x .cp.np

• Case e = moverr .x .cp.np and x /∈ X , then e ′ = moverr .x .cp.np.

e ′ is enabled in T :

e is enabled in S ⇒ x ∈ dom(posS ) ∧
cp = last(posS (x ))

⇒ x ∈ dom(posT ) ∧ by (1) and x /∈ X
cp = last(posT (x )) by (1) and x /∈ X

⇒ e ′ is enabled in T

T ′ ≤ S ′: Since e and e ′ only change pos(x ), movedPoints and currentLocks ,
we only show (1), (6)and(7):

posT ′(x ) = front(posT (x )) by moverr .x .cp.np
= front(posS (x )) by (1) and x /∈ X
= posS ′(x ) by moverr .x .cp.np

39



movedPointsT ′ = ∅ by moverr .x .cp.np
= movedPointsS ′(s) by moverr .x .cp.np

currentLocksT ′ = currentLocksT \ releaseTable(np)
by moverr .x .cp.np

= currentLocksS \ releaseTable(np) or
∅ \ releaseTable(np)

= currentLocksS ′ or ∅

• Case e = moverr .x .cp.np and x ∈ X , then e ′ = idle.

e ′ is trivially enabled in T .

T ′ ≤ S ′: Since e and e ′ only change pos(x ), movedPoints and currentLocks ,
we only show (1), (6)and(7):

posT ′ = posT by idle
= posS \ X × ALLTRACK+ by (1)
= posS \ {x} × ALLTRACK+ ∪ {x 7→ front(posS (x ))}\

X × ALLTRACK+ by moverr .x .cp.np
= posS ′ \ X × ALLTRACK+ since x ∈ X

movedPointsT ′ = ∅ by idle
= movedPointsS ′(s) by moverr .x .cp.np

For (7), we have:

currentLocksT ′ = currentLocksT

by idle
currentLocksS ′ = currentLocksS \ releaseTable(np)

by idle

For any (r , p) ∈ releaseTable(np), we have that np ∈ topo(r) by
assumption 1. Furthermore, np ∈ posS (x ), by (9), we have that
currentLocksT (r) = ∅, hence currentLocksT ′(r) = ∅.
The event of this case moves the rear of a train in X , hence, no signal
changes from red to green, then (8) follows immediate; and it is not
moved into a new route, then, (9) holds for S ′ and T ′.
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• Case e = request .r .yes , then e ′ = request .r .yes .

e ′ is enabled in T :

e is enabled in S
⇒ clearTable(r) ⊆ emptyTracksS ∧

signalStatusS (signal(r)) = red ∧
normalTable(r) ⊆ normalPointsS ∪ unlockedPointsS ∧
reverseTable(r) ⊆ reversePointsS ∪ unlockedPointsS

⇒ clearTable(r) ⊆ emptyTracksT ∧
as (1) implies emptyTracksS ⊆ emptyTracksT

signalStatusT (signal(r)) = red ∧ by (3)
normalTable(r) ⊆ normalPointsT ∪ unlockedPointsT ∧

by (4) and (7)
reverseTable(r) ⊆ reversePointsT ∪ unlockedPointsT

by (5) and (7)
⇒ e ′ is enabled in T

T ′ ≤ S ′: Since e and e ′ only change signalStatus(signal(r)), normalPoints ,
reversePoints , movedPoints , and currentLocks(r), we only show (3),
(4), (5), (6), (7), (8):

signalStatusT ′(signal(r)) = green = signalStatusS ′(signal(r))
by request .r .yes

normalPointsT ′ = normalPointsT ∪ normalTable[{r}] \ reverseTable[{r}]
by request .r .yes

= normalPointsS ∪ normalTable[{r}] \ reverseTable[{r}]
by (4)

= normalPointsS ′ by request .r .yes

reversePointsT ′ = reversePointsT ∪ reverseTable[{r}] \ normalTable[{r}]
by request .r .yes

= reversePointsS ∪ reverseTable[{r}] \ normalTable[{r}]
by (4)

= reversePointsS ′ by request .r .yes
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movedPointsT ′ = (normalPointsT \ normalPointsT ′)∪
(reversePointsT \ reversePointsT ′)

by request .r .yes
= (normalPointsS \ normalPointsS ′)∪

by (4) and above
(reversePointsS \ reversePointsS ′)

by (4) and above
= movedPointsS ′ by request .r .yes

currentLocksT ′ [{r}] = currentLocksT [{r}] ∪ lockTable[{r}]
by request .r .yes

= lockTable[{r}]
since r locks at most lockTable[{r}]

For (8), the existence is immediate by r . The uniqueness follows from
Assumptions (3) and (4) that it is not possible to have 2 routes sharing
signals since they must share points and the locks on these points must
be different.

For (9), any route r ′ such that t ∈ topo(r ′) cannot be requested in
S and T since assumption 2 and the fact that there is a train on its
topology. Hence, r ′ 6= r , i.e., we do not change the locks by r ′ in S ′.

• Case e = enter .x .t and x /∈ X , then e ′ = enter .x .t .

e ′ is enabled in T :

e is enabled in S ⇒ x /∈ dom(posS ) ∧
t ∈ ENTRY ∧
nextdS (t) ∈ emptyTracksS

⇒ x /∈ dom(posT ) ∧ by (1)
t ∈ ENTRY ∧
nextdT (t) ∈ emptyTracksT by (1) and (2)

⇒ e ′ is enabled in T

T ′ ≤ S ′: Since e and e ′ only change pos and movedPoints , we only
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show (1) and (7):

posT ′ = posT ∪ {x 7→ 〈t〉} by enter
= posS \ X × ALLTRACK+ ∪ {x 7→ 〈t〉} by (1)
= posS ∪ {x 7→ 〈t〉} \ X × ALLTRACK+ as x /∈ X
= posS ′ \ X × ALLTRACK+ by enter

movedPointsT ′ = ∅ by enter
= movedPointsS ′ by enter

• Case e = enter .x .t and x ∈ X , then e ′ = idle.

e ′ is obviously enabled in T .

T ′ ≤ S ′: Since e and e ′ only change pos and movedPoints , we only
show (1) and (7):

posT ′ = posT by idle
= posS \ X × ALLTRACK+ by (1)
= posS ∪ {x 7→ 〈t〉} \ X × ALLTRACK+ as x ∈ X
= posS ′ \ X × ALLTRACK+ by enter

movedPointsT ′ = ∅ by idle
= movedPointsS ′ by enter

• Case e = exit .x .t and x /∈ X , then e ′ = exit .x .t .

e ′ is enabled in T :

e is enabled in S ⇒ posS (x ) = 〈t〉 ∧
t ∈ EXIT

⇒ posT (x ) = 〈t〉 ∧ by (1) and x /∈ X
t ∈ EXIT

⇒ e ′ is enabled in T

T ′ ≤ S ′: Since e and e ′ only change pos and movedPoints , we only
show (1) and (7):

posT ′ = posT \ {x 7→ 〈t〉} by exit
= posS \ X × ALLTRACK+ \ {x 7→ 〈t〉} by (1)
= posS \ {x 7→ 〈t〉} \ X × ALLTRACK+ as x /∈ X
= posS ′ \ X × ALLTRACK+ by exit
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movedPointsT ′ = ∅ by exit
= movedPointsS ′ by exit

• Case e = exit .x .t and x ∈ X , then e ′ = idle.

e ′ is obviously enabled in T .

T ′ ≤ S ′: Since e and e ′ only change pos and movedPoints , we only
show (1) and (7):

posT ′ = posT by idle
= posS \ X × ALLTRACK+ by (1)
= posS \ {x 7→ 〈t〉} \ X × ALLTRACK+ as x ∈ X
= posS ′ \ X × ALLTRACK+ by exit

movedPointsT ′ = ∅ by idle
= movedPointsS ′ by exit

• Case e = idle, then e ′ = idle. The proof is trivial since e and e ′ only
change movedPoint and movedPointsT ′ = movedPointsS ′ = ∅.

• Case e = nextSignal .x and x /∈ X , then e ′ = nextSignal .x .

e ′ is enabled in T :

e is enabled in S ⇒ first(posS (x )) = ran(homeSignal(s))
⇒ first(posT (x )) = ran(homeSignal(s))

by (1) and x /∈ X
⇒ e ′ is enabled in T

T ′ ≤ S ′: The proof is trivial since e and e ′ only change movedPoint
and movedPointsT ′ = movedPointsS ′ = ∅.

• Case e = nextSignal .x and x ∈ X , then e ′ = idle.

e ′ is trivially enabled in T .

T ′ ≤X S ′: The proof is trivial since e and e ′ only change movedPoint
and movedPointsT ′ = movedPointsS ′ = ∅.

• Case e = release.r .yes , then e ′ = release.r .yes .
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e ′ is enabled in T :

e is enabled in S
⇒ signalStatusS (signal(r)) = green ∧

currentLocksS [{r}] = lockTable[{r}] ∧
homeSignal(signal(r)) ∈ emptyTracksS

⇒ signalStatusT (signal(r)) = green ∧
by (3)

currentLocksT [{r}] = lockTable[{r}] ∧
by (8)

homeSignal(signal(r)) ∈ emptyTracksT

as (1) implies that emptyTracksS ⊆ emptyTracksT

⇒ e ′ is enabled in T

T ′ ≤ S ′: Since e and e ′ only change signalStatus(signal(r)), movedPoints ,
and currentLocks(r), we only show (3), (6), (7):

signalStatusT ′(signal(r)) = red by release.r .yes
= signalStatusS ′(signal(r)) by release.r .yes

movedPointsT ′ = ∅ by release.r .yes
= movedPointsS ′ by release.r .yes

currentLocksT ′ [{r}] = currentLocksT [{r}] \ lockTable[{r}]
by release.r .yes

= ∅ since r locks at most lockTable[{r}]
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