
A CSP Approach to Control in Event-B

Steve Schneider1, Helen Treharne1, and Heike Wehrheim2

1 Department of Computing, University of Surrey
2 Institut für Informatik, Universität Paderborn

Abstract. Event-B has emerged as one of the dominant state-based
formal techniques used for modelling control-intensive applications. Due
to the blocking semantics of events, their ordering is controlled by their
guards. In this paper we explore how process algebra descriptions can
be defined alongside an Event-B model. We will use CSP to provide ex-
plicit control flow for an Event-B model and alternatively to provide a
way of separating out requirements which are dependent on control flow
information. We propose and verify new conditions on combined spec-
ifications which establish deadlock freedom. We discuss how combined
specifications can be refined and the challenges arising from this. The
paper uses Abrial’s Bridge example as the basis of a running example to
illustrate the framework.

Keywords: Event-B, CSP, control flow, integration, consistency, deadlock-
freedom

1 Introduction

Event-B [1] is an elegant modelling language which is supported by a notion
of refinement to enable descriptions of systems to be elaborated during refine-
ment. Event-B has proven to be applicable in a wide range of domains, including
distributed algorithms, railway systems and electronic circuits. The basic spec-
ification construct is a machine that comprises of a number of events in which
control flow is implicit within their guards. Hence, Event-B can be classified as
being a state-based language: control can only be modelled via state variables and
guards on the state. On the other side, there are a number of specification for-
malisms with language support for explicitly specifying control, like statecharts,
Petri nets or process algebras, which are however not good at specifying state.
This observation has lead to introducing integrated formal methods, combin-
ing state-based formalisms with control-oriented languages. Examples include
combinations of (Object-)Z and CSP [17, 7, 11, 20], or closer to the approach
presented here, those integrating B with a process algebra [3, 4, 19].

Though Event-B can be and is used for modelling control-intensive applications,
it has recently been observed that explicit control specifications alongside Event-
B machines are nevertheless beneficial [10]. Control specifications can serve two

Machine M1 b=
Variables n
Invariants n ∈ {0, 1}
Initialisation n := 0
Event up b=

when n = 0 then n := n + 1 end
Event down b=

when n = 1 then n := n − 1 end

Machine M2 b=
Variables n
Invariants n ∈ {0, 1}
Initialisation n := 0
Event up b=

when true then n := 1 end
Event down b=

when true then n := 0 end

P b= up → down → P

Fig. 1. Event-B machines and control

purposes: on the one hand they can make the control flow in the Event-B ma-
chine explicit, and thus enhance readability but also facilitate analysis. On the
other hand, they can be used as a straightforward way of modelling control-
oriented requirements, and can thus ease specification. Figure 1 illustrates these
two applications. The machine M 1 on the left hand side regulates its control flow
(alternation between up and down events) via guards on the events. This control
flow is made explicit in the Communicating Process Algebra (CSP) [9] process
P below. Alternatively, we could have used the machine M2 on the right hand
side to describe the state, and then let the CSP process P in addition fix the
ordering of events. In this simple case the flow of control in M 1 is obvious and
the variable n might be needed anyway. However, more complex applications
might necessitate introducing variables solely acting as program counters. This
compromises readability of the specification and ease of modelling.

In this paper we will propose a combination of Event-B with the process alge-
bra CSP which serves these two purposes. The paper begins with a motivating
example in order to illustrate how CSP descriptions can be defined alongside
an Event-B machine. We will then give a failures divergences semantics (the se-
mantics domain of CSP) to the integration via a weakest precondition semantics
for Event-B. This follows previous approaches to integrating B with CSP [19]
through relating weakest preconditions with CSP’s failures-divergence seman-
tics [13]. The main focus of the paper rests on studying two fundamental issues
arising for the combination: how can we determine whether the obtained speci-
fications stay deadlock free despite the addition of CSP processes, and how can
the central notion of refinement used for developing specifications be applied in
the combination? The first issue is of particular importance because establish-
ing deadlock-freedom in pure Event-B models is often difficult in practice when
the flow of control is not simple, and so it is valuable to investigate approaches
which can make that easier. In this paper we introduce proof obligations on
Event-B machines which guarantee deadlock-freedom of a combination. For the
second part we develop conditions which allow to prove refinement for a com-
bined specification on the Event-B and CSP part in isolation. This gives rise

to a compositional refinement framework. Both techniques are illustrated on a
running example.

The paper is structured as follows: Section 2 introduces the notation and se-
mantics for CSP and for Event-B; Section 3 introduces the Bridge example
used to illustrate the approach; Section 4 contains the main results for estab-
lishing deadlock-freedom; and Section 5 discusses refinement; finally, Section 6
concludes.

2 Notation

We start with a short introduction to the two formalisms, CSP and Event-B.

2.1 CSP

CSP [9] is a process algebra and used to specify control oriented applications.
In this paper we will use the following subset of the CSP language:

P ::= e → P | P1 2 P2 | P1 u P2 | P1 ‖ P2 | S

The event e here is drawn from the set of events in process P , and S is a CSP
process variable. Events can either be pure CSP events, or correspond to events
in the corresponding Event-B machine. Notationally we will use e for simple
atomic CSP events not corresponding to Event-B events, whereas op will be used
for Event-B event names. In this paper we assume that we have no parameters
to channels. Recursive definitions are given as S =̂ P . In a CSP definition, all
process variables used are bound by some recursive definition. External choice,
2, is a choice between alternatives which can be influenced by other components
running in parallel, whereas u is an internal choice taken by the process alone.
The prefix operator → denotes sequencing. The CSP process P in Figure 1 thus
specifies a recursive process alternating between up and down events.

The form of parallel combination we use is alphabet parallel, in which processes
are associated with an alphabet (usually denoted α(P)) which is a set of events.
The occurrence of an event in the combination requires the participation of all
processes whose alphabet contains that event.

The semantics of CSP (see e.g. [16]) is given in terms of its traces (the sequences
of events it can execute), its failures (the events it might refuse after a trace) and
its divergences (the traces after which it might engage in internal events only):

traces(P) ⊆ α(P)∗

failures(P) ⊆ α(P)∗ × 2α(P)

divergences(P) ⊆ α(P)∗

The process P =̂ up → down → P for instance has the alphabet {up, down} and
traces(P) = {〈〉, 〈up〉, 〈up, down〉, 〈up, down, up〉, . . .}, failures(P) = {(〈〉, {down}),
(〈up〉, {up}), . . .} and divergences(P) = ∅. These three semantic domains come
with three different notions of process refinement in CSP, two of which we are
going to consider.

Definition 1. Let P1,P2 be CSP processes.
P2 is a traces refinement of P1 (P1 vT P2) if traces(P2) ⊆ traces(P1).
P2 is a failures refinement of P1 (P1 vF P2) if failures(P2) ⊆ failures(P1).

Intuitively, trace refinement is only concerned with safety: the refinement may
not exhibit more execution traces than the abstract process. Failures on the other
hand also treat liveness: a pair (tr ,X) ∈ failures(P) specifies events X which
may be refused to be executed after some trace tr . Failures refinement guarantees
that the concrete process may not refuse more events than the abstract one.
Further explanation of refinement can be found in [16]

2.2 Event-B

Event-B [1, 12] is a state-based specification formalism based on set theory. We
cannot describe all of Event-B here, only the basic parts of an Event-B machine,
required for this paper. A machine specification usually defines variables (collec-
tively called v), constants c (possibly with axioms A(c), which however do not
occur in our examples) and a set of invariants I (c, v) on constants and variables.
The core part is the definitions of events, each consisting of a guard G(c, v) over
constants and variables and a body (usually written as an assignment on the
variables) which defines a before-after predicate E (c, v , v ′) describing changes of
variables upon event execution, in terms of the relationship between the variable
values before (v) and after (v ′). A machine also has an initialisation T . Proof
obligations on events are expressed in terms of weakest precondition semantics,
where [S]R denotes the weakest precondition for statement S to guarantee to
establish postcondition R. A machine will have various proof obligations on it.
These includeconsistency obligations, that events preserve the invariant. They
can also include (optional) deadlock-freeness obligations, that at least one event
guard is always true.

A machine M1 is refined by another machine M2 if there is a linking invariant (i.e.
a predicate) J on the variables of the two machines, which is established by their
initialisations, and which is preserved by all events, in the sense that any event
of M2 can be matched by an event of M 1 to maintain J . This is the standard
notion of downwards simulation data refinement (see e.g. [5] for a description).
New events can also be introduced as data refinements of skip [1]: they need
not always be enabled, but their execution should maintain the linking relation-
ship to the same abstract state. Event-B admits a variety of proof obligations
depending on what is appropriate for the application. For the purposes of this

paper (where we need refinement in Event-B to induce refinement in the CSP
semantics), we require the strong relative deadlock freeness property S DLK E
of [12], which states that whenever an event E is enabled in machine M1, then ei-
ther E or a newly introduced event should be enabled in M2. We also require the
non-divergence property WFD REF , which states that newly introduced events
cannot always be enabled. When the standard refinement conditions, together
with both these conditions, are met we write M1 vD M2.

The machine M 1 in Figure 1 for instance defines one variable n, specifies this
to only take values 0 and 1 (invariant) and defines the two events up and down.
An initialisation section furthermore fixes the initial value for n.

Morgan’s CSP semantics for action systems [13] allows traces, failures, and diver-
gences to be defined for Event-B machines in terms of the sequences of operations
that they can and cannot engage in. This gives a way of considering Event-B
machines as CSP processes, and treating them within the CSP framework. Note
that the notion of traces for machines is dual to that presented in [1], where
traces are considered as sequences of states rather than our treatment of traces
as sequences of events.

The alphabet α(M) of a machine M is simply its set of events.

The traces of a machine M are those sequences of events tr = 〈a1, . . . , an〉 which
are possible for M (after initialisation T): those that do not establish false:

traces(M) = {tr | ¬[T ;tr]false}

Here, the weakest precondition on a sequence of events is the weakest precon-
dition of the sequential composition of those events: [〈a1, . . . , an〉]P is given as
[a1; . . . ; an]P .

The failures of a machine M are those pairs (tr ,X) for which performing tr
followed by refusing X is possible:

failures(M) = {(tr ,X) | ¬[T ;tr]((
∨

op∈X

Gop(c, v)))}

In other words, it is not always the case that performance of tr is followed by
some event from X being enabled.

A sequence of operations tr is a divergence if the sequence of operations is not
guaranteed to terminate, i.e. ¬[T ; tr]true. Thus

divergences(M) = {tr | ¬[T ;tr]true}

M is divergence-free if divergences(M) = ∅.

These definitions provide the link between the weakest precondition semantics
of the operations, and the CSP semantics of the B machine.

2.3 Combining CSP and Event-B

Figure 1 has defined the process P that alternates between two events. We do
not require both the process P and the machine M 1 in order to capture the
requirement of alternating events. Either description independently would have
been clear enough. Nonetheless, it is possible to combine the descriptions of P
and M 1 and we could view P as being an annotation of M 1. This is exactly
the way in which control flow expressions are being used in [10]. The author is
using flows to provide patterns for the events of an Event-B machine, but does
not permit the flows to contain events other than those in the Event-B machine.
Being able to provide clear annotation of control flow is one benefit of including
control flow expressions within Event-B machines. Another is to be able to relieve
an Event-B machine of describing control flow explicitly and handing over that
responsibility to a CSP process. Then the purpose of the Event-B machine is to
define appropriate updates of the state of the machine.

Consider machine M 2, also defined in Figure 1. The process P combined with
M 2 (i.e. P ‖ M 2) also provides a definition which specifies alternating events.
In this example we have handed over complete control to the CSP. We will
illustrate in this paper a mixture of responsibilities in which both the CSP and
the Event-B contribute to controlling the ordering of events within a system. It
will enable us to see clearly how control flow is also restricted by the state of the
system. To this end, we define a joint semantics for the integration in terms of
the failures-divergence model of CSP. By giving a CSP semantics to an Event-B
machine M , the CSP semantics of P ‖ M follows from the CSP semantics of the
parallel operator ‖.

We will also explore in this paper how consistency conditions can be used to
ensure deadlock-freedom of an integrated specification and how refinement can
be proven in the integration.

3 Motivating and running example

We start with an example, inspired by Abrial’s car-island example of [1], to
exemplify the usefulness of control flow specifications in Event-B machines. The
specification is of a single lane bridge going from the mainland (ml) to an island
(il). The bridge has a capacity of 10 cars (stored in a constant CAP). Unlike
[1], our island has no limit on the number of cars on it. The specification needs
to ensure that cars only travel in one direction on the bridge; variables a and c
are used to track the number of cars on the bridge travelling from mainland to
island and vice versa.

Figure 2 shows the bridge and four events which are part of the abstract specifica-
tion: ml out and ml in are events moving cars out of and into the mainland, and
il in and il out are the corresponding events for the island. The abstract Event-B
machine Bridge0 given in Figure 3 needs to guarantee that cars on the bridge

Fig. 2. Single lane bridge between mainland and island

Machine Bridge0 b=
Variables a, c
Constants CAP = 10
Invariants a, c ∈ N
Initialisation a := 0, c := 0
Event ml out b= when c = 0 ∧ a < CAP then a := a + 1 end
Event ml in b= when c > 0 then c := c − 1 end
Event il out b= when a = 0 ∧ c < CAP then c := c + 1 end
Event il in b= when a > 0 then a := a − 1 end

Fig. 3. Abstract bridge model

only travel in one direction and that the bridge does not become overloaded.
The guards of the events ensure this, e.g., a car may only move from mainland
to bridge (ml out) if the direction island-to-mainland is currently empty, which
we can see from the value of variable c, and if the capacity of the bridge is not
already reached, which we can see from a. When it enters the bridge in direction
island, variable a is incremented.

This constitutes our abstract specification. Here, there is no necessity of explicitly
modelling control. The ordering of events depends on the data values of a and
c only. This could also be modelled in CSP, but state is not CSP’s primary
domain.

3.1 Bridge with CSP control

In a development step, the specification is refined so as to introduce traffic lights
which regulate the flow of cars onto the bridge. There are two traffic lights here,
one between mainland and bridge (ml tl) and the second one between island
and bridge (il tl). Each can be either green or red. The single lane use of the
bridge should now be achieved by proper switching of traffic light colours. In
this setting it becomes obvious that certain orderings among events need to be
specified, and CSP provides a natural way of doing so. The first part concerns

Machine Bridge1 b=
Variables a, c
Constants CAP = 10
Invariants a, c ∈ N
Initialisation a := 0, c := 0
Event ml out b= when a < CAP then a := a + 1 end
Event ml in b= when c > 0 then c := c − 1 end
Event il out b= when c < CAP then c := c + 1 end
Event il in b= when a > 0 then a := a − 1 end
Event ml tl green b= when c = 0 then skip end
Event il tl green b= when a = 0 then skip end

Fig. 4. The Bridge1 machine

the behaviour of car drivers: if car drivers would ignore red traffic lights, then
the correctness of the system can never be achieved, and so we capture the
expectation that drivers will not drive through a red light. The environment
assumption about correct driver behaviour is formulated in CSP as REQ1 and
REQ2:

REQ1 = ml tl green→ P
P = ml out→ P

2 ml tl red→ REQ1

REQ2 = il tl green→ Q
Q = il out→ Q

2 il tl red→ REQ2

These two processes specify constraints on cars going past the two traffic lights:
ml out is only possible when the mainland traffic light is green (REQ1) and a
similar property needs to hold for il out. REQ1 specifies a process which first
of all executes event ml tl green and then has the choice of allowing ml out or
carrying on with ml tl red.

A second constraint contains the switching of traffic lights: at most one of them
is allowed to be green, which gives a natural ordering on the events. The process
TL1 allows the choice of which light to switch at any stage. Thus we model the
choice between turning the island or the mainland light to green.

TL1 = ml tl green→ ml tl red→ TL1
2 il tl green→ il tl red→ TL1

The data dependent part of the system still remains in an Event-B machine,
Bridge1, given in Figure 4. Observe that the guards c = 0 and a = 0 have been
dropped from events ml out and il out respectively. Responsibility for ensuring
this element of the condition that these events are enabled is now within the
CSP part of the description, arising from the behaviour of the traffic lights,
and the assumptions about correct driver behaviour. The combination of CSP
and Event-B allows for a natural and clear separation of data-dependent and

Machine ControlledBridge b=
Variables a, c, tl , r1, r2
Sets LIGHTS = {reds,mlgreen, ilgreen}
Constants CAP = 10
Invariants a, c ∈ N ∧ r1, r2 ∈ {0, 1} ∧ tl ∈ LIGHTS
Initialisation a := 0, c := 0, r1 := 0, r2 := 0, tl := reds

Event ml out b= when a < CAP ∧ r1 = 1 then a := a + 1 end

Event ml in b= when c > 0 then c := c − 1 end

Event il out b= when c < CAP ∧ r2 = 1 then c := c + 1 end

Event il in b= when a > 0 then a := a − 1 end

Event ml tl green b= when c = 0 ∧ r1 = 0 ∧ tl = reds
then r1 := 1 ‖ tl := mlgreen end

Event il tl green b= when a = 0 ∧ r2 = 0 ∧ tl = reds
then r2 := 1 ‖ tl := ilgreen end

Event ml tl red b= when r1 = 1 ∧ tl = mlgreen
then r1 := 0 ‖ tl := reds end

Event il tl red b= when r2 = 1 ∧ tl = ilgreen
then r2 := 0 ‖ tl := reds end

Fig. 5. The Bridge machine with control incorporated within the guards

control-dependent aspects of a model. The resulting model is:

TL1 ‖ REQ1 ‖ REQ2 ‖ Bridge1

We will wish to show that this model is internally consistent: that the CSP
control description is compatible with the Event-B model, and does not introduce
new deadlocks. We will also want to be able to relate this model to the original
abstract Bridge0 model, to demonstrate that it is a refinement. The next sections
provide the underlying theory to enable us to consider these issues.

3.2 Event-B Bridge with Control

Figure 5 gives a pure Event-B machine which has the same behaviour as the com-
bined model TL ‖ REQ1 ‖ REQ2 ‖ Bridge1, where all the control is managed
within the event guards. We introduce a variable for each of the CSP control
components: tl , r1, and r2, for TL1, REQ1, and REQ2 respectively. Their val-
ues correspond to the states of the processes: they are used as guards to enable
events, and they are updated when events occur in accordance with the control
process description. For example, tl = reds is part of the enabling condition for
the tl green events, and tl is updated according to which light turns green.

In contrast to the previous specification, we cannot directly see the flow of control
on this machine anymore. There is no way of detecting that variables a and c

are used for holding data values, whereas variables r1, r2 and tl are used for
regulating the ordering of events. Furthermore, the switching of traffic lights and
the requirement on the car drivers respecting traffic lights is now mixed together.
The need for separation of different requirements on the model which we had in
the bridge with CSP control is gone.

3.3 Abrial’s Event-B Bridge

The standard Event-B approach taken by Abrial in the development of the bridge
in [1] is to proceed by a series of refinement steps focusing on the state invariants,
each of which introduces new events (such as the traffic lights), and where the
control emerges gradually as proof obligations are discharged. For example, the
requirement that at least one light must be red emerges from the requirement
that all events should preserve the invariant that the bridge should not contain
cars travelling in both directions.

The resulting bridge system is quite different to that in Figure 5, reflecting the
fact that allowing implicit control to emerge naturally in an Event-B develop-
ment is a different approach to imposing the flow of control explicitly, as we
propose in this paper. However, it is recognised (anecdotally) [8] that establish-
ing deadlock-freedom for such developments is often difficult in practice.

4 Deadlock

Having formally defined the meaning of a combined CSP and Event-B specifica-
tion now, we will next look at our two main issues: establishing deadlock-freedom
in this section, and compositional refinement in the next section.

If a CSP control description P is introduced to a deadlock-free Event-B machine
M , then there is a possibility that the additional constraints introduced by P
might lead to a deadlock. This is possible since both CSP and Event-B define
restrictions on the execution of events, and whenever these restrictions are not
consistent for shared events the combined model may deadlock. In terms of the
failures-divergence semantics this means that there is a trace after which all
events are being refused.

Definition 2. Let P be a CSP process and M an Event-B machine. The com-
bination P ‖ M is said to deadlock if there is a trace tr ∈ (α(P)∪ α(M))∗ such
that (tr , α(P) ∪ α(M)) ∈ failures(P ‖ M).

We will generally introduce a CSP controller over events which will be made
available by the Event-B part of the description. Such events might always be
enabled, but more generally we would only require them to be enabled at points
where none of the other events (i.e. those not in the CSP, and therefore under

I (c, v) ∧ ¬G1(c, v) ∧ . . . ∧ ¬Gn(c, v)
`

H1(c, v) ∧ . . . ∧Hm(c, v)

DF-CSP

G1 . . .Gn guards of operations in α(M) \ α(P)
H1 . . .Hm guards of operations in α(M) ∩ α(P)

Fig. 6. Deadlock freedom for CSP control

the control of the Event-B) are enabled. This design principle gives rise to the
proof rule DF-CSP given in Figure 6. This condition could for instance be
established using the Rodin toolset [2]. In this rule, G1 . . .Gn are the guards of
the operations in α(M) \ α(P) and H1 . . .Hm are the guards of operations in
α(M) ∩ α(P). The proof rule requires that whenever all of the events coming
from the Event-B machine alone are disabled, then all events jointly controlled
by the CSP process and the Event-B machine need to be enabled in the machine.
Thus the machine cedes control at that point to the CSP controller.

Theorem 1. Let P be a deadlock-free CSP process and M a divergence-free
Event-B machine which satisfies DF-CSP. Then P ‖ M is deadlock-free.

This theorem considers the case where, whenever all of the events controlled
by M alone are not enabled, then all of the events shared with P are enabled.
In such a situation, deadlock-freedom of P yields deadlock-freedom of P ‖ M .
Observe that if α(M) ∩ α(P) 6= ∅, then the condition on the operation guards
of M implies that M is deadlock-free.

Theorem 1 is applicable to the Bridge1 example of Section 3. In that example
we have that

α(Bridge1) \ α(TL1 ‖ REQ1 ‖ REQ2) = {ml in, il in}
α(Bridge1) ∩ α(TL1 ‖ REQ1 ‖ REQ2) = {ml out , il out ,

ml tl green, il tl green}

If all of the guards in α(Bridge1) \ α(TL1 ‖ REQ1 ‖ REQ2) are false, then we
have c = 0 ∧ a = 0. This implies each of the guards in α(Bridge1) ∩ α(TL1 ‖
REQ1 ‖ REQ2), and hence implies their conjunction. This is the condition to
conclude deadlock-freedom of TL1 ‖ REQ1 ‖ REQ2 ‖ Bridge1.

The condition establishes that all of Bridge1’s events shared with TL1 ‖ REQ1 ‖
REQ2 are enabled whenever all of the events that Bridge1 controls indepen-
dently are blocked. In such a state Bridge1 does not constrain TL1 ‖ REQ1 ‖
REQ2 at all, so TL1 ‖ REQ1 ‖ REQ2’s deadlock-freedom extends to TL1 ‖
REQ1 ‖ REQ2 ‖ Bridge1.

Theorem 1 is also applicable to the example P ‖ M 2 of Figure 1. However, it
is not applicable to P ‖ M 1, since the two events of M are shared with P , but
their guards are never both true, i.e.

∧
op∈α(M1)∩α(P) Gop(c, v) does not hold.

A more general theorem for deadlock-freedom is available, as a specialisation
of a result presented in [19] concerned with blocking B operations in classical
B. It is applicable to sequential controllers, i.e. those made up of prefix, choice,
and recursion, and focuses on the choices provided by the controller after any
particular trace.

To state the theorem we need first to define for sequential CSP terms P :

– offers(P): the offers made by P at stages before a recursive call;
– pass(P): the traces corresponding to a single complete pass through a recur-

sively defined process

Definition 3. For a CSP term P, the set offers(P) is defined inductively as
follows:

offers(a → P) = {(〈〉, {a})} ∪ {(〈a〉a tr ,Off) | (tr ,Off) ∈ offers(P)}
offers(P1 2 P2) = {(〈〉,Off 1 ∪Off 2) | (〈〉,Off 1) ∈ offers(P1)

∧ (〈〉,Off 2) ∈ offers(P2)}
∪{(tr ,Off 1) | (tr ,Off 1) ∈ offers(P1) ∧ tr 6= 〈〉}
∪{(tr ,Off 2) | (tr ,Off 2) ∈ offers(P2) ∧ tr 6= 〈〉}

offers(P1 u P2) = offers(P1) ∪ offers(P2)
offers(S) = {}

Definition 4. For a CSP term P, the set pass(P) is defined inductively as
follows:

pass(a → P) = {〈a〉a tr | tr ∈ pass(P)}
pass(P1 2 P2) = pass(P1) ∪ pass(P2)
pass(P1 u P2) = pass(P1) ∪ pass(P2)

pass(S) = {〈〉}

Theorem 2. For a recursive definition N =̂ P, if α(P) = α(M) and if there is
a (control loop invariant) predicate CLI such that

– [T]CLI
– ∀ tr ,Off .(tr ,Off) ∈ offers(P)⇒ (CLI ⇒ [tr](

∨
op∈Off Gop(c, v)))

– tr ∈ pass(P)⇒ (CLI ⇒ [tr]CLI)

then P ‖ M is deadlock-free.

Consider P and M 1 from Figure 1. We obtain

offers(P) = {(〈〉, {up}), (〈up〉, {down})}
pass(P) = {〈up, down〉}

We identify the control loop invariant CLI as n = 0, and check the conditions
in turn:

– [n := 0](n = 0) is indeed true.
– Checking the condition for the two offers in offers(P): n = 0 ⇒ [〈〉]Gup),

and n = 0⇒ [〈up〉]Gdown) are both true.
– Checking the condition for the single pass: n = 0 ⇒ [〈up, down〉](n = 0) is

also true.

The conditions are all true, so we conclude that P ‖ M 1 is deadlock-free.

5 Refinement

In addition to introducing control to Event-B models, we are also interested in
further developing an existing CSP ‖ Event-B model. Both CSP and Event-B
come with existing definitions of refinement [5] or development: in CSP this is
process refinement and in Event-B data refinement. These guarantee the refine-
ment to only have less traces or less failures than the abstract specification.

In contrast to process refinement, Event-B refinements usually also introduce
new events. The corresponding notion of refinement in CSP would need to first
hide (\) these events in the concrete process and then check for trace or failures
refinement. Hiding turns visible events into invisible, internal τ events. Thus
for instance checking for trace refinement with new events A means checking
P vT Q \A.

The data refinement on machines discussed in Section 2.2 thus induces traces,
failures, and divergences refinement. If M1 vD M2 in the Event-B setting, then
M1 v M2 \ A in each of the CSP semantic models, where A = α(M2) \ α(M1),
the set of new events introduced in M2.

Our objective is to achieve a compositional framework for refinement (like for
integrations of CSP and Object-Z [18, 15]). In the case of trace refinement, the
refinement relations are compositional. In other words, separately refining the
components of a CSP‖Event-B model results in a trace refinement of the model
as a whole. Hence safety properties are preserved. This is expressed in Theorem 3.

Theorem 3. Let P and P ′ be CSP processes such that P vT P ′ \ A1, and M
and M ′ Event-B machines such that M vD M ′ with new events A2. Then the
following holds:

P ‖ M vT (P ′ ‖ M ′) \ (A1 ∪A2) .

Unfortunately a similar result for failures refinement does not hold, and it is
not in general possible to deduce particular liveness behaviour of P ′ ‖ M ′ from
that of P ‖ M . This is because parallel composition does not in general preserve
liveness properties. However, Theorem 1 is applicable directly to P ′ ‖ M ′, thus
still allowing deadlock-freedom results to be established directly for the refined
models. Furthermore, we are able to obtain a less general result: if there is no
intersection between the new events introduced into P and those introduced into
M , then failures refinement is preserved.

Theorem 4. Let P and P ′ be CSP processes such that P vF P ′ \ A1, and
M and M ′ Event-B machines such that M vD M ′ with new events A2, where
A1 ∩ α(M ′) = ∅ and A2 ∩ α(P ′) = ∅. Then the following holds:

P ‖ M vF (P ′ ‖ M ′) \ (A1 ∪A2) .

Returning to our Bridge example, the bridge may occasionally need to be raised
(to allow large ships through). This should occur only when there are no cars
on the bridge in either direction, and also when the traffic lights are red in both
directions. The lights should remain red until the bridge is lowered again.

This new feature is introduced in terms of new events in the Event-B model and
the CSP description. The CSP description is augmented to capture the required
relationship between the bridge lifting and the lights:

TL2 = ml tl green→ ml tl red→ TL2
2 il tl green→ il tl red→ TL2
2 bridge raise→ bridge lower→ TL2

The requirement that no cars should be on the bridge when it is raised is captured
naturally as a new Event-B machine Bridge2 consisting of Bridge1 augmented
with the following event:

bridge raise =̂ when a = 0 ∧ c = 0 then skip end

Considering the control and the model separately, we have TL1 vT TL2 \ A,
where A = {bridge raise, bridge lower}, and also Bridge1 vD Bridge2 with new
events A.

Theorem 3 yields that TL1 ‖ Bridge1 vT (TL2 ‖ Bridge2) \ A, and hence that

TL1 ‖ REQ1 ‖ REQ2 ‖ Bridge1 vT (TL2 ‖ REQ1 ‖ REQ2 ‖ Bridge2) \ A

This demonstrates that the new feature is compatible with the existing system.

Furthermore, Bridge2 meets DF-CSP, and TL2 ‖ REQ1 ‖ REQ2 is deadlock-
free, so we can also conclude that TL2 ‖ REQ1 ‖ REQ2 ‖ Bridge2 is deadlock-
free.

6 Conclusion

This paper has illustrated how CSP and Event-B descriptions can be com-
bined and what reasoning can be performed on the combined models. The
work resonates closely with [10] but is wider in scope because we want to
consider using the process descriptions to specify requirements of a system
which may not already be defined in the Event-B model. The benefit of split-
ting responsibility across both CSP and Event-B is that requirements can be
dealt with separately. We must however investigate how global invariants can
be expressed. In our example, one might say that if the most recent event is
ml tl green then the number of cars coming the other way should be zero.
i.e., last(tr) = ml tl green ⇒ c = 0. Since we are now combining descriptions,
we lose the benefit of being able to express all invariants as state predicates.
Further work is needed before we can conclude what can be expressed using a
combination which would have been difficult using only Event-B predicates.

This paper is the basis of our ongoing research; we want to consider developing
conditions which ensure that an introduction of a CSP process in a specification
constitutes a valid refinement step, possibly using ideas of [6]. Mussat describes
in [14] that we should be very clear about the separation between system vari-
ables and those that depict the physical environment, and it will be interesting to
investigate whether CSP can contribute to the clear delineation of these aspects.

Acknowledgements

We are grateful to the anonymous reviewers for their thoughtful and constructive
suggestions.

References

1. J-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, 2010.

2. J.-R. Abrial, M. J. Butler, S. Hallerstede, and L. Voisin. A Roadmap for the Rodin
Toolset. In E. Börger, M. J. Butler, J. P. Bowen, and P. Boca, editors, ABZ, volume
5238 of Lecture Notes in Computer Science, page 347. Springer, 2008.

3. M. J. Butler. csp2B: A practical approach to combining CSP and B. In FACS,
pages 182–196, 2000.

4. M. J. Butler and M. Leuschel. Combining CSP and B for specification and property
verification. In J. Fitzgerald, I. J. Hayes, and A. Tarlecki, editors, FM, volume 3582
of Lecture Notes in Computer Science, pages 221–236. Springer, 2005.

5. J. Derrick and E. A. Boiten. Refinement in Z and Object-Z. Springer-Verlag, 2001.

6. J. Derrick and H. Wehrheim. Model transformations incorporating multiple views.
In M. Johnson and V. Vene, editors, AMAST, volume 4019 of Lecture Notes in
Computer Science, pages 111–126. Springer, 2006.

7. C. Fischer. CSP-OZ - a combination of CSP and Object-Z. In H. Bowman and
J. Derrick, editors, Second IFIP International conference on Formal Methods for
Open Object-based Distributed Systems, pages 423–438, July 1997.

8. T.S. Hoang. personal communication, email 25th May 2010.
9. C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

10. A. Iliasov. On Event-B and Control Flow. Technical report, School of Computing
Science, Newcastle University, July 2009.

11. B.P. Mahony and J.S. Dong. Blending Object-Z and timed CSP: An introduction
to TCOZ. In K. Futatsugi, R. Kemmerer, and K. Torii, editors, 20th International
Conference on Software Engineering (ICSE’98). IEEE Press, 1998.

12. C. Métayer, J.-R. Abrial, and L. Voisin. Event-B language. RODIN Project Deliver-
able 3.2, http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf, accessed 25/5/10.

13. C. Morgan. Of wp and CSP. Beauty is our business: a birthday salute to E. W.
Dijkstra, pages 319–326, 1990.

14. L. Mussat. Modéles Réactifs. Technical report, ClearSy, July 2008.
15. E-R. Olderog and H. Wehrheim. Specification and (property) inheritance in CSP-

OZ. Sci. Comput. Program., 55(1-3):227–257, 2005.
16. S. Schneider. Concurrent and Real-time Systems: The CSP approach. Wiley, 1999.
17. G. Smith. A semantic integration of Object-Z and CSP for the specification of

concurrent systems. In J. Fitzgerald, C. B. Jones, and P. Lucas, editors, FME’97:
Industrial Application and Strengthened Foundations of Formal Methods, volume
1313 of Lecture Notes in Computer Science, pages 62–81. Springer, 1997.

18. G. Smith and J. Derrick. Specification, Refinement and Verification of Concurrent
Systems-An Integration of Object-Z and CSP. Formal Methods in System Design,
18(3):249–284, 2001.

19. H. Treharne and S. Schneider. How to drive a B machine. In J. P. Bowen, S. Dunne,
A. Galloway, and S. King, editors, ZB, volume 1878 of Lecture Notes in Computer
Science, pages 188–208. Springer, 2000.

20. J. Woodcock and A. Cavalcanti. The Semantics of Circus. In D. Bert, J. P. Bowen,
M. C. Henson, and K. Robinson, editors, ZB, volume 2272 of Lecture Notes in
Computer Science, pages 184–203. Springer, 2002.

A Proofs

Proof of Theorem 1

Theorem 1 Let P be a deadlock-free CSP process and M a divergence-free
Event-B machine which satisfies DF-CSP. Then P ‖ M is deadlock-free.

Proof: Assume the contrary. Then (tr , Σ) ∈ failures(P ‖ M) (Σ = α(P)∪α(M)
full alphabet). Then there are (tr � α(P),X1) ∈ failures(P), (tr � α(M),X2) ∈
failures(M) such that X1 ∪ X2 = Σ,X1 ⊆ α(P),X2 ⊆ α(M) (we write refusal
sets relative to the alphabet of the process under consideration).

Case A: α(M) ∩ α(P) ∩X2 = ∅.
This implies X1 = α(P) and hence P deadlocks (contradiction).

Case B: α(M) ∩ α(P) ∩X2 6= ∅.
By definition (tr � α(M),X2) ∈ failures(M) means that we have ¬[tr �
α(M)]

∨
op∈X2

Gop(c, v)). We first have a closer look at the negation of the
disjunction, which is equivalent to the conjunction

∧
op∈X2

¬Gop(c, v):∧
op∈X2

¬Gop(c, v)

=
∧

op∈α(M)\α(P)

¬Gop(c, v) ∧
∧

op∈α(M)∩α(P)∩X2

¬Gop(c, v)

DF-CSP
⇒

∧
op∈α(M)∩α(P)

Gop(c, v) ∧
∧

op∈α(M)∩α(P)∩X2

¬Gop(c, v)

=
∧

op∈(α(M)∩α(P))\X2

Gop(c, v) ∧
∧

op∈α(M)∩α(P)∩X2

Gop(c, v) ∧ ¬Gop(c, v)

=
∧

op∈(α(M)∩α(P))\X2

Gop(c, v) ∧ false

= false

Hence we get ¬[tr � α(M)]true which contradicts divergence-freedom of M .
2

Proof of Theorem 3

Theorem 3 Let P and P ′ be CSP processes such that P vT P ′ \ A1, and M
and M ′ Event-B machines such that M vD M ′ with new events A2. Then the
following holds:

P ‖ M vT (P ′ ‖ M ′) \ (A1 ∪A2) .

Proof: Assume the contrary: P ‖ M 6vT P ′ ‖ M ′ \ (A1 ∪A2). As a consequence
∃ tr ∈ traces((P ′ ‖ M ′) \ (A1 ∪A2)) s.t. tr /∈ traces(P ‖ M).

⇒∃ t̂r ∈ traces(P ′ ‖ M ′) s.t. t̂r � (α(M ′) ∪ α(P ′)) \ (A1 ∪A2) = tr

⇒∃ t̂r : t̂r � α(M ′) ∈ traces(M ′) ∧ t̂r � α(P) ∈ traces(P ′)

⇒∃ t̂r : t̂r � (α(M) ∪A2) ∈ traces(M ′) ∧ t̂r � (α(P) ∪A1) ∈ traces(P ′)

⇒∃ t̂r : t̂r � ((α(M) ∪A2) \A2) ∈ traces(M)

∧ t̂r � ((α(P) ∪A1) \A1) ∈ traces(P)

⇒∃ t̂r : t̂r � α(M) ∈ traces(M) ∧ t̂r � α(P) ∈ traces(P)

⇒∃ t̂r : t̂r � (α(M) ∪ α(P)) ∈ traces(P ‖ M)

⇒∃ t̂r : t̂r � ((α(M)′ ∪ α(P ′)) \ (A1 ∪A2)) ∈ traces(P ‖ M)
⇒tr ∈ traces(P ‖ M)

Contradiction. 2

Proof of Theorem 4

Theorem 4 Let P and P ′ be CSP processes such that P vF P ′ \ A1, and
M and M ′ Event-B machines such that M vD M ′ with new events A2, where
A1 ∩ α(M ′) = ∅ and A2 ∩ α(P ′) = ∅. Then the following holds:

P ‖ M vF (P ′ ‖ M ′) \ (A1 ∪A2) .

Proof: In the following we assume refusal sets to only contain events in the
alphabet of the process under consideration.

Assume the contrary: P ‖ M 6vF (P ′ ‖ M ′) \ (A1 ∪ A2). Hence ∃(tr ,X) ∈
failures((P ′ ‖ M ′) \ (A1 ∪A2)) s.t. (tr ,X) /∈ failures(P ‖ M).

⇒∃(t̂r , X̂) ∈ failures(P ′ ‖ M ′), t̂r \ (A1 ∪A2) = tr ∧ X̂ = X ∪A1 ∪A2

⇒∃X1,X2 : (t̂r � α(P ′),X1) ∈ failures(P ′) ∧ (t̂r � α(M ′),X2) ∈ failures(M ′) ∧

X1 ∪X2 = X̂ ∧X1 ⊆ α(P ′) ∧X2 ⊆ α(M ′)

⇒(t̂r � α(P ′) \A1,X1 \A1) ∈ failures(P)

∧ (t̂r � α(M ′) \A2,X2 \A2) ∈ failures(M)

∧X1 ∪X2 = X̂ ∧X1 ⊆ α(P ′) ∧X2 ⊆ α(M ′)

⇒(t̂r � (α(P ′) \A1 ∪ α(M ′) \A2),X1 \A1 ∪X2 \A2) ∈ failures(P ‖ M) ∧

X1 ∪X2 = X̂ ∧X1 ⊆ α(P ′) ∧X2 ⊆ α(M ′)

⇒(t̂r � ((α(P ′) ∪ α(M ′)) \ (A1 ∪A2)), (X1 ∪X2) \ (A1 ∪A2)) ∈ failures(P ‖ M)

∧X1 ∪X2 = X̂
⇒(tr ,X) ∈ failures(P ‖ M)

The last but one implication follows from the fact that α(P ′) \A1 ∪ α(M ′) \A2

equals (α(P ′) ∪ α(M ′)) \ (A1 ∪ A2) and that X1 \ A1 ∪ X2 \ A2 equals (X1 ∪
X2) \ (A1 ∪ A2) when A1 ∩ α(M ′) = ∅ and A2 ∩ α(P ′) = ∅. So the conditions
on alphabets are indeed needed here, whereas no alphabet conditions were not
needed for Theorem 3. 2

