Augmenting B with Control Annotations

Wilson Ifill}:2
Steve Schneider?
Helen Treharne!

'Department of Computing, University of Surrey and 2AWE Aldermaston

Abstract. CSP||B is an integration of the process algebra Communi-
cating Sequential Processes (CSP), and the B-Method, which enables
consistent controllers to be written for B machines in a verifiable way.
Controllers are consistent if they call operations only when they are
enabled. Previous work has established a way of verifying consistency
between controllers and machines by translating control flow to AMN
and showing that a control loop invariant is preserved. This paper of-
fers an alternative approach, which allows fragments of control flow ex-
pressed as annotations to be associated with machine operations. This
enables designers’ understanding about local relationships between suc-
cessive operations to be captured at the point the operations are written,
and used later when the controller is developed. Annotations provide a
bridge between controllers and machines, expressing the relevant aspects
of control flow so that controllers can be verified simply by reference to
the annotations without the need to consider the details of the machine
operations. This paper presents the approach through two instances of
annotations with their associated control languages, covering recursion,
prefixing, choice, and interrupt.

1 Introduction

The design and implementation of critical systems benefits from development
in a formal method such as the B-Method, which models systems in terms of
state and operations. However, this approach does not support specifications of
execution patterns directly, and so approaches such as Event-B [MAV05] and
CSP||B [ST05] have been proposed to incorporate action specification with B.
This paper develops the CSP||B approach, which offers a clean separation of
control from data manipulation. The developments presented here fall within the
scope of AWE’s System-B project, which involves collaborative research into the
use of CSP||B to specify co-designs [MS06] and to formally investigate systems
designs of large scale developments.

One motivation for the work is a desire to enable Engineers to describe many
aspects of design within a single notation. We introduce control annotations
into the B-Method to enable the formal capture of control flow fragments in

B during the development of the B machines. We generate proof obligations to
demonstrate that the set of executions allowable by the annotations do not cause
operations to diverge. The benefit of this approach is that only the semantics
of the machine operations is required in checking the annotations, and these
checks are similar in size and difficulty to standard B machine consistency checks.
Annotations can be checked against controllers written in CSP, which describe
the flow of control explicitly. There is no need to check the CSP directly against
the full B description, in contrast to previous CSP||B work where it was necessary
to translate the entire CSP controller into AMN in order to check it. Once the
annotations are shown to be correct with respect to the B machine we can
evaluate controllers against the annotations without further reference to the
machine.

This paper describes the extendable framework for introducing annotations and
controllers and presents two exemplars. In Section 2, we briefly introduce the
approach. In Section 3 we demonstrate the framework by using a simple language
for controllers, the NEXT annotation for B operations, and define the notion of
consistency between them. Section 4 presents a worked example of a simple traffic
control system. In Section 5 we introduce an interrupting annotation FROM-ANY,
add the CSP interrupt operator to the controller language, and extend the notion
of consistency. We develop the worked example in Section 6 to illustrate the new
annotation and its use. Finally in Section 7 we discuss further directions and
related work.

We assume the reader is familiar with the Abstract Machine Notation of the B-
Method [Abr96]. We restrict our attention in this paper to correct B machines:
those for which all proof obligations have already been discharged. We use I to
refer to the invariant of the machine, T to refer to the machine’s initialisation,
P; to refer to the precondition of operation Op;, and B; to refer to the body of
operation Op;.

Controllers will be written in a simple subset of the CSP process algebraic lan-
guage [Hoa85,5ch99]. The language will be explained as it is introduced. Con-
trollers are considered as processes performing events, which correspond to op-
erations in the controlled B machine. Thus operation names will appear in the
controller descriptions as well as the B machine definitions.

2 The general framework

The approach proposed in this paper introduces annotations on B operations as a
mechanism for bridging the gap between B machines and CSP controllers, whilst
maintaining the separation of concerns. The approach consists of the following
components:

— Machine definition: the controlled component must first be defined.

Machine

New AMN proof obligations

Annotations

Consistency Checks

Control

Fig. 1. Relationship between the different parts of the approach

— Annotations: the initialisation and the operations in the machine definition
are annotated with fragments of control flow.

— Annotation proof obligations: verification conditions that establish con-
sistency of the annotations with the controlled machine. This means that the
fragments of control flow captured by the annotations really are appropriate
for the machine.

— Controller: this is a process that describes the overall flow of control for
the B machine.

— Consistency checking: establishing that the controller is consistent with
the annotations—that every part of the control flow is supported by some
annotation.

Checking a CSP controller against a machine is thus reduced to checking it
against the annotations and verifying that the annotations are appropriate for
the machine. The relationship between the different parts of the approach is
illustrated in Figure 1.

The framework presented here is quite general, in that it may be applied to
a variety of annotations and control languages. The first step to be taken is
therefore to fix on the control language and the associated annotations to be
incorporated into the AMN machine descriptions. The key result that these
build up to is expressed in Theorem 1, though the underlying theory will not be
expanded in this paper for reasons of space.

3 A first approach

We will demonstrate the approach firstly with a simple model to illustrate how
the aspects of the approach interrelate. The first kind of annotation we consider
is the NEXT annotation, and we use an extremely simple controller language

consisting only of prefixing, choice, and recursion. These go naturally together
because the NEXT annotation is concerned with successive operations, and the
controller language allows simple loops of sequences of operations.

3.1 The NEXT annotation

We annotate an operation of a B machine with a NEXT annotation. Currently, we
introduce this as a comment included with the description of the operation, so
that it is invisible to current tools. However, in principle tools could be modified
to recognise an additional ANNOTATION clause to introduced the additional
information into operation descriptions.

A NEXT annotation on an operation Op; introduces another operation Op;, or
set of operations Opj, ..., Opy, which should be enabled after Op; is executed.

The NEXT annotation is written as follows:

Op; = PRE P, THEN B, END /*{ Opj,...,Op } NEXT */

3.2 Annotation proof obligations

The annotation corresponds to the assertion that, following the execution of Op;,
operations Op; through to Op;, are available for execution. This gives rise to the
following proof obligation, which requires that the precondition of each of the
listed operations is enabled:

Definition 1 (NEXT Proof Obligation for Operations). The proof obliga-
tion associated with a NEXT annotated operation Op; is given as:

(I APy = [Bi](P;))
VAN
A\ (I/\Pi = [Bz](Pk))

If the conjunction of proof obligations for all the annotations are discharged then
we say that the annotations are consistent with the machine. This ensures that
any controller which only calls operations that are listed, following execution of
Op;, can be sure that those operations will be enabled.

Definition 2 (NEXT Proof Obligation for Initialisation). The proof obli-
gation associated with the annotation

T/«{Op,,...,Op} NEXT % /

on initialisation T s given by

A[T](Pr)

This establishes that all of the listed operations are enabled following initial-
isation. Thus, any controller which only begins with such operations will be
consistent with the controller.

We will use next(Op;) to identify the set of operations given in the NEXT annota-
tion. Thus from the annotation above we have that nezt(Op;) = {Opj, ..., Opi}.
We also use next(INITIALISATION) to identify the set of operations in the an-
notation of the INITIALISATION clause. To ensure that there is no deadlock in the
system, every operation, and the INITIALISATION, must have a NEXT annotation.

3.3 A simple controller language

We will begin with the following simple controller language, which allows only
event prefix, choice, and recursion:

Definition 3 (Controller Syntax).
R:=a—R|ROR|S

Here, the event a is an operation name, and S is a process variable. Recursive
definitions are then given as S = R. In a controller definition, all process variables
used are bound by some recursive definition. The results presented in this paper
require that all recursive definitions are guarded, which means that at least one
event must occur before a recursive call.

We can now give a definition of consistency between a controller and the an-
notations on a B machine. The key underlying idea is that whenever one event
Op; follows another Op; in the controller’s execution, then there must be an
annotation that underpins this, ensuring that the associated operation Op; is
guaranteed to be enabled after Op; has occurred.

To do this, we first capture the initial events init(R) for a controller R:

Definition 4 (initial elements of CSP controller process).
init(a — R1) = {a}
init(R1 O R2) = init(R1) U init(R2)
init(S) = init(R) where S = R

Note that in a controller definition the process variable S must be bound by
some recursive definition S = R, and this defines init(9).

For example, if LOOP = a — b — LOOP, then init(LOOP) = a.

3.4 Consistency

A controller will be step-consistent with a collection of annotations if all con-
secutive events are allowed by the occurrence of some annotation. In the case
where the only kind of annotation is NEXT, it is straightforward to define step-
consistency, and we do this over the structure of the syntax.

Definition 5. [Step-consistency of NEXT Annotated Machines and Controllers]
The step-consistency of a controller R with the annotations of machine M is
defined structurally over the syntaz of R as follows:

1. @ — R is step-consistent with M’s annotations if init(R) C next(a) and R
1s step-consistent with M ’s annotations.

2. R1 O R2 is step-consistent with M’s annotations if R1 is step-consistent
with M ’s annotations and R2 is step-consistent with M ’s annotations.

3. S is step-consistent with M ’s annotations.

A family of recursive definitions S = R is step-consistent with M ’s annotations
if each R is step-consistent with M ’s annotations.

There is one additional aspect of consistency required: that the initial state of the
machine is consistent with the starting point of the controller. This is captured
as initial-consistency:

Definition 6 (Initial-Consistency of NEXT Annotated Machines and Con-

trollers). A controller R is initially-consistent with the annotations of machine
M if init(R) C next(INITIALISATION).

Definition 7 (Consistency). A controller R is consistent with the annota-
tions of machine M if it is step-consistent with M ’s annotations and initially-
consistent with M ’s annotations.

The main result of this section is the following theorem:

Theorem 1. If R is consistent with the annotations of a machine M, and the
annotations of M are consistent with machine M, then operations of M called
in accordance with the control flow of R will never be called outside their pre-
conditions.

The key feature of the proof of this theorem is an argument that no trace of R
leads to an operation of M called outside its precondition. This is established
by building up the traces of R and showing that at each step a an operation
called outside its precondition cannot be introduced, by appealing to the relevant
annotation and applying its proof obligation.

MACHINE Lights

SETS COMMAND = { Stop , Go }

VARIABLES Moat , Square

INVARIANT Moat = Stop V Square = Stop

INITIALISATION Moat , Square := Stop , Stop /* { Stop_All } NEXT */

OPERATIONS
Stop_All = PRE true THEN Moat, Square := Stop, Stop END
/* { Go_Moat, Go_Square } NEXT */ §
Go_Moat = PRE Moat = Stop A Square = Stop THEN Moat := Go END
/* { Stop_All, Stop_Moat } NEXT */
Stop_Moat = PRE Moat = Go THEN Moat := Stop END
/* { Go_Moat, Go_Square } NEXT */ §
Go_Square = PRE Moat = Stop N Square = Stop THEN Square := Go END
/* { Stop_All, Stop_Square } NEXT */
Stop_Square = PRE Square = Go THEN Square := Stop END
/* { Go_Moat, Go_Square } NEXT */
END

Fig. 2. Lights machine

Lights_CTRL = Stop_All — S_CTRL

S_CTRL = (Go_Moat — Stop_Moat — S_CTRL)
O (Go_Square — Stop_Square — S_CTRL)

Fig. 3. Lights Controller

The benefit of this theorem is that the details of the operations of M are required
only for checking the consistency of the annotations, and are not considered
directly in conjunction with the controller. The annotations are then checked
against the controller using the definition of consistency above. This enables
a separation of concerns, treating the annotations as an abstraction of the B
machine.

4 Example: Carcassonne Traffic Control System

We use the example of a traffic light system to illustrate the ideas introduced in
the previous section.

A traffic control system for the main street of the walled Cité of Carcassonne
is specified. The main street is narrow and is heavily used by tourists and some
motor vehicles brave enough to edge through the alley. The system must allow
traffic up into the cité market square from the moat or down from the square

to the moat gate along the same single width road. The system must allow time
for motor vehicles to clear the road before changing direction. A B machine
that offers a choice between the traffic flows is given in Figure 2. A controller
consistent with the annotations is given in Figure 3. We note that the controller
specified in the annotations is a subset of the allowable actions.

In order to show that Lights_CTRL is an appropriate controller for Lights, we
make use of the annotations. We must show that the annotations are consistent
with the machine, and we must also show that the controller is consistent with
the annotations. We consider each of these in turn.

4.1 Consistency of annotations with the machine

The proof obligations associated with the annotations (eliding the invariant) are
as follows:

— Initialisation: the initialisation clause must establish the precondition of
all the operations identified in its annotation; in this case this is Stop_All,
with precondition true. From Definition 2, we must prove

[Moat, Square := Stop, Stop](true).

— Stop_All: there are two next operations, Go_Moat and Go_Square, and so
there will be a proof obligation associated with each of them. In fact each
of them have the same precondition: Moat = Stop A Square = Stop. Hence
the two proof obligations are identical, and correspond to

I A Psiop_au = [Moat, Square := Stop, Stop](Moat = Stop A Square = Stop).

— Go_Moat: there are two next operations, Stop_All and Stop_Moat, identi-
fied in the annotation. For Stop_All, the precondition is true, so the proof
obligation is I A Pgo_moeat = [Moat := Gol(true). Considering Stop_Moat,
its precondition is Moat = Go, so the corresponding proof obligation is

I A PGo_moat = [Moat := Go](Moat = Go).

— Go_Square: the annotation and hence the proof obligations for this opera-
tion are entirely similar to those for Go_Moat, but assigning to Square this
time.

— Stop_Moat: there are two next operations, Go_Moat and Go_Square, so
there will be a proof obligation associated with each. The proof obligation as-
sociated with Go_Moat is given by I A Psiop_Moat = [Bstop_Moat](PGo_Moat)s
which expands to

(Moat = Stop V Square = Stop) A (Moat = Go)
= [Moat := Stop](Moat = Stop A Square = Stop)

The proof obligation associated with Go_Square is entirely similar, since the
precondition for Go_Square is the same as that of Go_Moat.

— Stop_Square: the annotation and hence the proof obligations for this op-
eration are entirely similar to that for Stop_Moat.

In all cases the proof obligations are discharged. Note that in the case of Stop_Moat
the invariant and its precondition are necessary for establishing that the opera-
tion body establishes the precondition of the next operations.

Discharging the proof obligations means that the annotations correctly provide
information concerning permitted successions of operations, and can be used to
verify the appropriateness of the controller.

4.2 Consistency of the controller with the annotations

To show that the controller Lights_CTRL is consistent with Lights we apply
the definitions of step-consistent and initially-consistent. Let R_CTRL be the
body of the definition of S_CTRL. Then it is necessary to show that R_CTRL
is step-consistent with the annotations of the Lights machine.

Step-consistency is established by considering the parts of the definition of
R_CTRL:

— The process variable S_CTRL is step-consistent, by the definition of step-
consistency for process variables.

— Stop_All — S_CTRL: the prefix rule for step-consistency from Definition 5
requires that init(S_CTRL) C next(Stop_All). This is true in this case, since
the process variable S_CTRL is step-consistent and

init(S_CTRL) = { Go_Moat, Go_Square} = next(Stop_All).

— Stop_Moat — S_CTRL: this is step-consistent, since the process variable
S_CTRL is step-consistent and
init(S_CTRL) = { Go_Moat, Go_Square} = next(Stop_Moat).

— Go_Moat — Stop_Moat — S_CTRL: step-consistency follows from the fact
that Stop_Moat — S_CTRL is step-consistent, and

init(Stop_Moat — S_CTRL) = {Stop_Moat}
C {Stop_Moat, Stop_All}
= next(Go_Moat).

— Stop_Square — S_CTRL: this is step-consistent, since the process variable
S_CTRL is step-consistent, and
init(S_CTRL) = { Go_Moat, Go_Square} = next(Go_Square).

— Go_Square — Stop_Square — S_CTRL: step-consistency follows from the
fact that the process Stop_Square — S_CTRL is step-consistent, and

init(Stop_Square — S_CTRL) = {Stop_Square}
C {Stop_Square, Stop_All}
= next(Go_Square).

— Go_Moat — Stop_Moat — S_CTRL O Go_Square — Stop_Square — S_CTRL:
this is step-consistent, due to the step-consistency of both sides of the choice.

Initial-consistency follows from the fact that

next(INITIALISATION) = init(Lights_CTRL).

Thus, S_CTRL is consistent with the annotations of the machine Lights, and so
the controller is appropriate for the machine.

5 Introducing FROM-ANY annotations and interrupts

Section 2 introduced the key components of the annotation approach that pro-
vide a framework for developing controlled systems. In general there will be a
variety of annotations that we will want to make use of, and a richer language
for controllers. These will have an impact on the consistency relationship, and
on the underlying proofs which will need to be adapted to accommodate the
changes.

In this section we will extend the controller language to include interrupts, which
are commonly used in control flow descriptions. A further annotation will be
introduced to accompany this extension to the controller language, and we will
see the impact on the notion of consistency.

5.1 The FROM-ANY Annotation

The introduction of interrupts in the control language gives rise to another an-
notation, the FROM-ANY annotation.

The FROM-ANY annotation is written /* FROM-ANY */. This annotation is added
to an operation which can follow any previous operation (including itself), and
can also follow initialisation. It will naturally be used on an operation which
follows an interrupt, since such an operation might follow any previous operation,
allowing for the fact that the operation might happen anywhere.

Its use in an arbitrary operation Op; is given as follows:

Op; = PRE P; THEN B; END /* FROM-ANY */ ;

5.2 Annotation proof obligation

The annotation corresponds to the claim that after the execution of any oper-
ation, Op,; will always be available to execute. The annotation gives rise to the
following proof obligation: that the precondition P; of Op; is enabled after any
precondition, and also that it is enabled after initialisation:

Definition 8 (FROM-ANY Proof Obligations). The proof obligation associ-
ated with a FROM-ANY annotated operation Op; is given as:

¥ op € OPERATIONS & Poy A1 = [Boy]P; A
[T]P;

A condition sufficient to establish the proof obligation of Definition 8 is the
assertion I = P;. Its use is captured as a lemma:

Lemma 1. If I = P, for an operation Op; with a FROM-ANY annotation, then
the proof obligations on Op; associated with this annotation are all true.

When it holds, this is a simpler condition to establish. However, it may not
always hold, since it is stronger than the FROM-ANY proof obligations.

Operations can be annotated with both a FROM-ANY annotation and a NEXT
annotation. The former indicates what the operation can follow, and the latter
indicates what can come next.

For a machine M, we define from-any(M) to be the set of operations of M that
are annotated with a FROM-ANY clause.

5.3 Controller language
We introduce an interrupt operator to the control language as follows:

Definition 9 (Controller Syntax).

R:=a—R|ROR|RAR|S

The global interrupt operator, A\, permits the second controller fragment to
interrupt the former at any point, even before the first action of the former has
been performed. However, we do not rely on an interrupt establishing initial-
consistency. There should always be a next annotation in the INITIALISATION.

The init(R) function was defined on controllers by means of a structural in-
duction over the controller syntax. Thus the introduction of an interrupt clause
into the controller syntax necessitates a revision to the definition of init(R), as
follows:

Definition 10 (init on CSP controller process).

init(a — R1) = {a}
init(R1 0 R2) = mzt(Rl) U init(R2)
init(R1 A R2) = init(R1) U init(R2)
nit(S) = zmt(R) where S = R
The first event that can be performed by R1 /A R2 is either a first event from
R1, or else a first event from R2 following the occurrence of the interrupt.

5.4 Consistency

We again provide a definition for consistency between a controller and the an-
notations. This is again separated into a notion of step-consistency, which is
concerned with successive events; and initial-consistency, regarding the initial
state of the system.

The notion of step-consistency now needs to take account of a further clause in
the controller language, and the fact that the machine M has more than one kind
of annotation. Thus the definition has one additional clause, and from-any(M)
will also appear.

Definition 11 (Step-consistency of NEXT and FROM-ANY Annotated Ma-
chines and Controllers). The step-consistency of a controller R with the an-
notations of machine M is defined structurally over the syntax of R as follows:

1. @ — R is step-consistent with M’s annotations if init(R) C (next(a) U
from-any(M)) and R is step-consistent with M ’s annotations.
2. R1 O R2 is step-consistent with M ’s annotations if R1 is step-consistent
with M ’s annotations and R2 is step-consistent with M ’s annotations.
8. R1 A\ R2 is step-consistent with M’s annotations if R1 is step-consistent
with M ’s annotations, R2 is step-consistent with M , and init(R2) C from-any(M).
4. S is step-consistent with M ’s annotations.

A family of recursive definitions S = R is step-consistent with M ’s annotations
if each R is step-consistent with M ’s annotations.

In the case for a — R, we require that every operation b that R can perform
first, which are those operations in init(R), must be able to follow a, either
because b is in next(a) and hence identified explicitly as an operation that can
follow a, or because b is in from-any(M), and hence can follow anything,.

In the case for interrupt, we have that R1 must be step-consistent with M
because all executions of R1 are possible executions of R1 A R2; R2 must also
be step-consistent since control can pass to R2; and every operation that R2 can

Lights_CTRL2 = Stop_All — S_CTRL2
S_CTRL2 = S_INNER A Stop_All — S_CTRL2

S_INNER = (Go_Moat — Stop_Moat — S_INNER)
O (Go_Square — Stop_Square — S_INNER)

Fig. 4. A Second Lights Controller

initially perform must be able to follow anything, since the interrupt can occur
at any point.

The cases for choice and for recursion are similar to the previous version of
step-consistency.

Definition 12 (Initial-Consistency of NEXT and FROM-ANY Annotated

Machines and Controllers). A controller R is initially-consistent with the an-
notations of machine M if init(R) C next(INITIALISATION)U from-any(M)).

As stated previously, a controller R is consistent with the annotations of a B
machine M if it is step-consistent and initially-consistent with the annotations
of M.

Once again we have everything in place to establish the main theorem of this
section:

Theorem 2. If R is consistent with the annotations of a machine M, and the
annotations of M are consistent with machine M, then operations of M called
in accordance with the control flow of R will never be called outside their pre-
conditions.

6 Example continued

We develop the example of the Carcassonne traffic control system. We wish to
extend the controller so that normal operation can be interrupted at any point
with all lights being set to Stop. The resulting controller is given in Figure 4.

The NEXT annotations of the machine Lights are not sufficient to establish consis-
tency with Lights_ CTRL2, and in particular the interrupt requires consideration.
The only event immediately following the interrupt is Stop_All, so we require a
FROM-ANY annotation on that operation in addition to the NEXT annotation it
already has. The resulting operation is as follows:

Stop_All = PRE true THEN Moat, Square := Stop, Stop END
/* { Go_Moat, Go_Square } NEXT */
/* FROM-ANY */

This annotation introduces an additional proof obligation. Since the precondi-
tion Pgtop_au of Stop_All is true, it follows that I = Pgiop_an, and hence by
Lemma 1 that the annotation is consistent with the machine.

It remains to show that the new controller Lights_CTRL2 is consistent with the
annotated machine. Initial-consistency, and most of the step-consistency cases
are similar to those seen in the consistency check for Lights_CTRL and we do
not repeat them here. However, the new conditions are required to consider the
interrupt construction S_INNER A Stop_All — S_CTRL2. Step-consistency
requires us to check three conditions:

1. S_INNER is step-consistent: this follows from the definition of step-consistency
on process variables.

2. Stop_All — S_CTRL2 is step-consistent: this follows since S_CTRL2 is
step-consistent and

init(S_CTRL) = { Go_Moat, Go_Square, Stop_All}
= {Go_Moat, Go_Square} U {Stop_All}
= next(Stop_All) U from-any(Lights)

3. init(Stop_All — S_CTRL2) C from-any(Lights). This follows since init(Stop_All —
S_CTRL2) = {Stop_All} and Stop_All has a FROM-ANY annotation.

Thus we conclude that Lights_ CTRL2 is an appropriate controller for the ma-
chine Lights.

7 Discussion

We are currently investigating further extensions to the framework. Operations
with input and output arise naturally in B machines, and can have the an-
notations described previously. However, the situation is more complex, since
controllers can also pass information from one operation call to another. This
can lead to complications in the definitions of step-consistency, and it is neces-
sary to carry around information obtained from previous operation calls when
reasoning about step-consistency. This also gives rise to parameterised recursive
definitions. Query operations are of particular interest, since it appears that dif-
ferent considerations apply: they do not change the state of the machine, but
require output which can affect control flow.

The current approach requires separate construction of annotations and of con-
trollers. One longer term aim of this line of research is the ability to synthesise
controllers from the machine annotations. Such a controller would be the weak-
est controller consistent with a machine, and other consistent controllers would
then be refinements. This is a topic of future research.

We now consider related work. The notion of incorporating temporal properties
in B is not new. Abrial and Mussat [AM98] introduced the temporal operators
of next, eventually and leadsto. In the case of leadsto (written ~~) they focus
on identifying predicates P and) such that if P holds at any point then @
eventually must hold, together with a list of events that make progress towards
satisfying the final predicate). Their approach does not explicitly define the
order in which these events must occur nor whether they occur more than once,
the clause simply identifies which events can be performed in order to satisfy
the P ~~ (@ predicate. They use these predicates to express properties of the
system which must hold when the temporal ordering of events is considered. We
are using annotations to give us a handle on what operations are allowed to be
performed when considering the temporal ordering of operations. We do not use
them as a basis for expressing properties of a system and therefore use distinct
clauses to define a possible ordering on operations in a novel way. Our approach
does resonate with [AM98] in that we do not change the proof obligations that
already exist but also identify additional proof obligations in order to ensure
that the temporal orderings suggested by the annotations are sensible ones.

Event-B temporal operators aside, we could represent our running example in
Event-B as follows:

stopall = when true then c := 1 end
gosquare = when c=1 then c:= 2 end
stopquare = when c=2 then c:= 1 end
gomoat = when c=1 then c := 3 end
stopmoat = when c=3 then c:= 1 end

The predicates in the guards determine whether an event is enabled or not and
governs when an event can be performed. In this approach the control flow is
implicit and not always straightforward to understand or extract. As we saw in
our example it is possible to allow either gosquare or gomoat to be performed
when both variables are in the state Stop because the next annotation of the stop
all operation refers to both these operations. In our approach this was translated
to an external choice in CSP. In Event-B if more than one guard is true then
the decision as to which event is performed is internal. Because we are only
dealing temporal ordering at the level of traces this distinction is not significant.
However, contrary to normal B consistency one important difference is that we
do not need to examine the preconditions of all the operations to identify the
next set of possible operations. By using annotations we can clearly see which
operations should be available to be performed following an operation because
we can look at each operation in isolation.

The approach in [Tre00] combines CSP and B so that CSP captures, primarily,
the event aspect of the design, whereas the B captures the state evolution. Each
CSP controller directs a single B machine via communication channels. Con-
trollers may also interact with other controllers. In [Tre00], consistency between
the pre-conditioned B machine and the CSP controllers is established in two
ways. Firstly, by showing that operations are always called within their precon-
ditions, which establishes divergence freedom. Guarded controllers present the
possibility of controller deadlock. A second, consistency condition establishes
that controllers are deadlock free. Consistency is investigated using the weakest
preconditions of guarded commands [Dij97], by translating the controller into
AMN and demonstrating that it preserves a control loop invariant (CLI). In
contrast, in this paper we establish divergence freedom by showing that the con-
troller is consistent with the machine annotations. If every operation has a next
annotation then the machine is also deadlock-free.

References

[Abr96] J-R. Abrial. The B-Book: Assigning Programs to Meaning. Cambridge Uni-
versity Press, 1996.

[AM98] J-R. Abrial and L. Mussat. Introducing dynamic constraints in B. In B’98,
number 1393 in LNCS. Springer, 1998.

[Dij97] E. W. Dijkstra. A Discipline of Programming. Prentice Hall PTR, 1997.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[MAVO05] C. Métayer, J-R. Abrial, and L. Voisin. Event-B language, 2005. RODIN
deliverable 3.2, Project IST-5111599.

[MS06] A.McEwan and S. Schneider. A verified hardware development using CSP||B.
In Fourth ACM-IEEFE International Conference on Formal Methods and Mod-
els for Codesign, 2006.

[Sch99] S. Schneider. Concurrent and Real-time Systems: The CSP Approach. John
Wiley and Sons, 1999.

[ST05] S.A. Schneider and H.E. Treharne. CSP theorems for communicating B ma-
chines. Formal Aspects of Computing, 17(4):390-422, 2005.

[Tre00] H. Treharne. Combining Control Executives and Software Specifications. PhD
thesis, Royal Holloway, University of London, 2000.

