
Alistair A. McEwan, Steve Schneider, Wilson Ifill, and PeterWelch
IOS Press, 2007

A Step Towards Refining and Translating
B Control Annotations to Handel-C

Wilson Ifill a,b and Steve Schneiderb

a AWE Aldermaston, Reading, Berks, England; Email:wil.ifill@awe.co.uk
b Department of Computing, University of Surrey, Guildford,Surrey, England.

{ W.Ifill , S.Schneider } @surrey.ac.uk

Abstract. Research augmenting B machines presented at B2007 has demonstrated
how fragments of control flow expressed as annotations can beadded to associated
machine operations, and shown to be consistent. This enables designers’ understand-
ing about local relationships between successive operations to be captured at the point
the operations are written, and used later when the controller is developed. This paper
introduces several new annotations and I/O into the framework to take advantage of
hardware’s parallelism and to facilitate refinement and translation. To support the new
annotations additional CSP control operations are added tothe control language that
now includes: recursion, prefixing, external choice, if-then-else, and sequencing. We
informally sketch out a translation to Handel-C for prototyping.

Keywords. B Metrhod, CSP, Hardware Description Language,

Introduction

Annotating B-Method specifications with control flow directives enables engineers to de-
scribe many aspects of design within a single notation. We generate proof obligations (pob’s)
to demonstrate that the set of executions allowable by the annotations of a B [1] [15] machine
do not cause operations to diverge. The benefit of this approach is that only the semantics of
the machine operations are required in checking the annotations, and these checks are sim-
ilar in size and difficulty to standard B machine consistencychecks. Controllers written in
CSP, which describe the flow of control explicitly, can be checked against the annotations.
There is no need to check the CSP [7] [13] [14] directly against the full B description. Once
the annotations are shown to be correct with respect to the B machine we can evaluate con-
trollers against the annotations without further reference to the machine. Machines can be
refined and implemented in the normal way while remaining consistent with the controller.
In previous work [9] we presented theNEXT andFROM annotations, which permitted sim-
ple annotated B specifications and controllers to be written. Before that [10] we presented a
route to VHDL [5], a hardware description language, from B. In this paper we present three
more annoations:NEXT SEQ, NEXT PAR andNEXT COND and add input andoutput to the
operations. We also begin to present an informal refinement theory for annotations and a
route to implementation via HandelC. The refinement theory outline in this paper allows the
annotations to be independently refined and remain consistent with the Machine.

Previous work obtaining hardware implementations from B approached the problem by using
B as a Hardware Description Language (HDL) that translates to VHDL [8] [?]. Our approach

achieves the goal of obtaining hardware via Handel-C as an intermediate stepping stone,
which means that the B that is translated does not require thesame degree of HDL structural
conformance as does the B for VHDL translation. Approaches that translate HDLs to B for
analysis [4] do not support the development process directly. Event B [3] has been used to
support the development of hardware circuits [2] that includes refinement but not the code
generation process. Not only are we working towards code generation, but we wish to work
with specifications that model both state and control equally strongly. CSP‖B [18] [17] has
the capability to model state and event behaviour, but the CSP controller must be instantiated
with B components to verify the combination. We break the verification of controllers down
into manageable stages, and offer an approach to refinement and translation. Integrations of
CSP-Z by Moto and Sampaio [11] and CSP-OZ Fischer [6] requirea CSP semantics to be
given to Z in order for integration to be analyseableas awhole. Our approach differs to other
formal language integrations in two ways. Firstly, The control flow behaviour is capture dur-
ing the development of the state operation in the form of annotation. The annotations are con-
trol specifications. Only later is a complete controller developed that satisfies the annotations.
In this way the developer of the state operations in B can constrain controller behaviour, but
full controller development can be posponed. and possible performed by a different engineer.
Secondly, there is no notion of executing the models together and analysing this integration
for deadlocks. In this approach the different formal notations provide different views of the
system, and both views are required to obtain a executable model.

This paper describes extensions to the work presented in B2007 [9]. This papers contribution
is the introduction of additional next annotations, incorporation of I/O into the annotations,
and an informal treatment of refinement and translation. In Section 1, the general framework
is introduced. In Section 2 a B machine is introduced along with theNEXT annotation. The
proof obligations associated with the annotations and control language are given in Section 3.
The consistency of the annotations are given in Section 4. A refinement and translation outline
is given in Section 5. An example illustration of some refinements and translations are given
in section 6. A discussion on the benefits and future work is had in Section 7.

We restrict our attention in this paper to correct B machines: those for which all proof oblig-
ations have already been discharged. We useI to refer to the invariant of the machine,T to
refer to the machine’s initialisation,Pi to refer to the precondition of operationOpi, andBi to
refer to the body of operationOpi.

Controllers will be written in a simple subset of the CSP process algebraic language [7,14].
The language will be explained as it is introduced. Controllers are considered asprocesses
performingevents, which correspond to operations in the controlled B machine. Thus opera-
tion names will appear in the controller descriptions as well as the B machine definitions. The
Handel-C translations are shallow and in a few cases performed in accordance with existing
translation work [12] [16].

1. The General Framework

The approach proposed in this paper introducesannotationson B operations as a mecha-
nism for bridging the gap between B machines and CSP controllers, while maintaining the
separation of concerns. The approach consists of the following components:

• Machine definition: the controlled component must first be defined.
• Annotations: the initialisation and the operations in the machine definition are annotated

with fragments of control flow.

• Annotation proof obligations: verification conditions that establish consistency of the
annotations with the controlled machine. This means that the fragments of control flow
captured by the annotations really are appropriate for the machine.

• Controller : this is a process that describes the overall flow of control for the B machine.
• Consistency checking: establishing that the controller is consistent with the annotations

by showing that that every part of the control flow is supported by some annotation.
• Refine/Translate: refinement may be needed before a translations can be achieved. The

translation is the final step and requires additional annotation directives to set type sizes
and I/O ports.

Checking a CSP controller against a machine is thus reduced to checking it against the an-
notations and verifying that the annotations are appropriate for the machine. The relationship
between the different parts of the approach are given in Figure 1.

Machine
Definition

?
HHHY

Annotated
Machine

Discharge
pob’s
Between
Definitions

HHHj
Annotated
Machine
Definition

?

Define
Controller

HHHY

Demonstrate
Consistency
Between
Definitions

HHHj Controller
Definition

?

Refine and
Translate

Handel-C
Implementation

Figure 1. The Process Flow in the Approach.

The framework presented here is quite general, in that it maybe applied to both Event-B and
classical B. Additional annotations maybe added along withsupporting control opedrations
as required. Provided that a consistency argument can be developed. The first step to be taken
is therefore to fix on the control language and the associatedannotations to be incorporated
into the B machine descriptions.

2. The Approach

We will demonstrate the approach with a simple model to illustrate aspects of the approach.
The annotation we consider is theNEXT annotation. An extremely simple controller language
consisting only of prefixing, choice, parallel, if-then-else, and recursion is used to develop
the example.

2.1. A B Machine

B-Method [1] has evolved two major approaches: traditionalB and Event-B. Annotations can
be used in either traditional B machines, or Event-B systems. Traditional B approaches spec-
ification in a state-oriented fashion. It focuses on the services that a system might provide,
whereas Event-B focuses on the events that occur within the system. B Machines are used in
the examples. The generic traditional BMACHINE S, given below, has variables, invariant,
initialisation, and a set of operationsOP1 through toOPn that have inputs and outputs.v
describes a set of inputs andy describes a set of outputs to and from a operation, rerspectively.

MACHINE S

VARIABLES v

INVARIANT v

INITIALISATION v:∈ u

OPERATIONS

y←− OP1(z1) =̂ P1 | B1;

y2 ←− OP2(z2) =̂ G2 =⇒ B2;

...

yn←− OPn(zn) =̂ Pn | Bn

END

The operations are defined in Guarded Substitution Language(GSL). It is asserted that the
machine is consistent when each operation can be shown to establish the machine invariant,
I , and the machine cannot deadlock. Every operation must be either guarded,G, or have a
precondition,P, but all must have a next annotation (not shown). In Event-B,unlike classical
B, new operations can be added during refinement. In the example we anticipate the need
for operations in the later stages of refinement by introducing the signature of the operation
with a body defined by theskipoperation. We do not in this paper adapt the pobs for Event-B
refinement. The refinement process may involve adding detailto the specification in a con-
sistent way to realise an implementation, which is a key notion in B. Refinement involves re-
moving non-determinism and adopting concrete types. We addto the concept of B refinement
with the annotations, by adding the notion of annotation control flow refinement.

3. The Annotation with I/O

We annotate operations of a B machines with aNEXT annotation that supports operations
with I/O. If the conjunction of pob’s for all the annotationsare discharged then we say that
the annotations are consistent with the machine. A consistent controller that evolves in ac-
cordance with the next annotations steps will not diverge ordeadlock. ANEXT annotation on
the current operationOPi (whereOPi representsyi ←− Opi(zi) andyi is the output vector,
y1 . . . yn, andzi is the input parameter vector,z1 . . . zm) introduces another operationOPj, or
set of operationsOPj1 , . . . , OPjn, which will be enabled afterOPi is executed (where an oper-
ation in the annotationOPj representsOpj(ej) andej is the input expression vector,e1 . . . em).
In the NEXT annotationej is a list of expressions which serves as inputs on whichOPj can
be called next. In this paper we will restrict the expressions to variablesv′s defined in the B

machines which will supply inputs in the hardware implementation. The value of this vari-
able is not considered when calculating the pob’s. Only the type of the variable used in the
annotation is checked.

3.1. The BasicNEXT Annotation

OPi =̂ PRE Pi THEN Bi END /* {OPj1 , . . . , OPjn} NEXT */ ;

Definition 3.1 (Proof Obligations of the Basic NEXT on INITIALISATION) Given the
following B initialisation:

INITIALISATION T /* {Opj?vj } NEXT; */

The following pob’s arises: [T]((vj ∈ Tj) ⇒ Pj)

TheNEXT annotation following the initialisation indicates the first enabled operation. There
can be more than one operation in the annotation. The exampleillustrates only one next
operation. The variables used as input parameters in the annotation (?vj1 ... ?vjm) must be of
the type required in the operation definition.

Definition 3.2 (Proof Obligations of the Basic NEXT on Operations) Given the follow-
ing B operation:

yi ←− Opi(zi) =̂ PRE Pi THEN Bi END

/* { Opj(vj1), . . . , Opjn(vjn) } NEXT */ ;

The related pob’s follow:

(Pi ∧ I ⇒ [Bi]((vj1 ∈ Tj1) ⇒ Pj1)) ∧

. . .

(Pi ∧ I ⇒ [Bi]((vjn ∈ Tjn) ⇒ Pjn))

where the elements ofvi andvj are free inBi , Pi, and I

3.2. The NEXTPAR Annotation

I/O operations can be annotated to indicate parallel execution NEXT PAR . Two or more
sets are introduced (only two illustrated below). Any operation of a respective set can run in
parallel with any other operation from any of the other sets.

Definition 3.3 (Proof Obligations of NEXT PAR) Given the following B operation:

yi ←− Opi(zi) =̂ PRE Pi THEN Bi END

/* { Opj1(vj1), . . . , Opjn(vjn) }

{ Opp1
(vp1

), . . . , Oppn(vpn) } NEXT PAR */ ;

The related pob’s follow:

(Pi ∧ I ⇒ [Bi]((vj1 ∈ Tj1) ⇒ Pj1)) ∧

. . .

(Pi ∧ I ⇒ [Bi]((vjn ∈ Tjn) ⇒ Pjn)) ∧

(Pi ∧ I ⇒ [Bi]((vp1
∈ Tp1

) ⇒ Pp1
)) ∧

. . .

(Pi ∧ I ⇒ [Bi]((vpn ∈ Tpn) ⇒ Ppn)) ∧

variable used({OPj1, . . . , OPjn}) ∩ variable used({Opp1
, . . . , OPpn}) = {}

The parallel annotation offers the option to execute two or more operations in parallel after
the current operation, provided they do not set or read any variables in common. The proof
obligation ensures that all the operations in the annotations are enabled after the current
operation. Only one from each set will be executed in parallel.

3.3. The NEXTSEQ Annotation

Operations can be annotated to indicate a requirement for a particular sequential execution:
NEXT SEQ.

Definition 3.4 (Proof Obligations of NEXT SEQ) Given the following B operation:

yi ←− Opi(zi) =̂ PRE Pi THEN Bi END

/* { Opj1(vj1), . . . , Opjn(vjn) }

{ Opp1
(vp1

), . . . , Oppn(vpn) } NEXT SEQ */ ;

The related pob’s follow:

(Pi ∧ I ⇒ [Bi]((vj1 ∈ Tj1) ⇒ Pj1)) ∧

. . .

(Pi ∧ I ⇒ [Bi]((vjn ∈ Tjn) ⇒ Pjn)) ∧

(Pj1 ∧ I ⇒ [Bj1]((vp1
∈ Tp1

) ⇒ Pp1
)) ∧

. . .

(Pj1 ∧ I ⇒ [Bj1]((vpn ∈ Tpn) ⇒ Ppn)) ∧

. . .

(Pjn ∧ I ⇒ [Bjn]((vp1
∈ Tp1

) ⇒ Pp1
)) ∧

. . .

(Pjn ∧ I ⇒ [Bjn]((vpn ∈ Tpn) ⇒ Ppn))

where the elements ofzi andvj andvp are free inBi , Pi, and I

The NEXT SEQ annotation is conceptually different from theNEXT annotation, because it
captures specific paths of executions that must exist in a controller. The current operation
Opi must enable each operation in{Opj1(vj1), . . . , Opjn(vjn)}, and each operation in that set
must enable each operation in the set{Opp1

(vp1
), . . . , Oppn(vpn)}. Practically, this annotation

should be used to depict particular paths: one operation perset.

3.4. The NEXTCOND Annotation

To enable the current operation to conditionally select oneset of operations next as opposed
to some other set theNEXT COND annotation is used. The conditionNEXT COND annotation
is an extension to theNEXT annotation that supports conditional next path selection.

In definition 3.5 if the output of the current operation istrue then all the operationsOPj1
through toOPjn are guaranteed to be available to execute. If however the current operation
returns false then the operationsOPp1

through toOPpn are guaranteed to be available to
execute. The proof of this claim can be verified by discharging the following proof obligation
given in definition 3.5:

Definition 3.5 (Proof Obligation of NEXT COND) Given the following B operation:

yi ←− Opi(zi) =̂ PRE Pi THEN Bi END

/* { Opj1(vj1), . . . , Opjn(vjn) }

{ Opp1
(vp1

), . . . , Oppn(vpn) } NEXT COND */ ;

The related pob’s follow:

(I ∧ Pi ⇒ [Bi]((yi = TRUE ∧ vj1 ∈ Tj1)⇒ Pj1))

. . .

∧ (I ∧ Pi ⇒ [Bi]((yi = TRUE ∧ vjn ∈ Tjn)⇒ Pjn))

∧ (I ∧ Pi ⇒ [Bi]((yi = FALSE} ∧ vp1
∈ Tp1

)⇒ Pp1
))

. . .

∧ (I ∧ P1 i ⇒ [Bi]((yi = FALSE ∧ vpn ∈ Tpn)⇒ Ppn))

The lists of theNEXT COND annotation do not have to be the same size. The operation that
carries this annotation must have a single boolean output.

3.5. A Simple Controller Language

The next annotation represents a control fragment specification of the whole system. The
CSP controller represents a refined view of the annotated B system. The annotated B ma-
chine hasn’t the fidelity to clearly portray the necessary control detail that the CSP can: the
annotations are not clearly laid out as a set of recursive definitions. On translation both the B
and the CSP are used to build the implementation, hence the need to develop a controller.

CSP view of system

Environment

6

?

CSP event
op!y?z

B view of system

Environment

6

?

B Operation
y←− op(z)

Figure 2. Different views of the same action.

A distinction is drawn between operations that respond to external commands and those that
are driven internally. A development will begin with a description of a number of operations:
things that the system must do when commanded. During the development refinements will
introduce internal operations. We distinguish between external and internal operations by
marking the external operations with/ ∗ ext∗ / annotations, which are discussed in more
detail in the refinement and translation section 5.

Definition 3.6 details the CSP subset of control fragments used in this paper: event prefix,
choice, interleaving, if-then-else, and recursion control.

Definition 3.6 (Controller Syntax with I/O)

R ::= 2
y

a!y?z→ R |

R1 2 R2 |

(2
y1

a1!y1?z1 → skip ||| . . . ||| 2
yn

an!yn?zn→ skip; R) |

2
y

e!y → if y then R1 else R2 |

S(p)

In this paper the CSP controller is a different view of the annotated B specification. A more
complex arrangement arises if the CSP controller is permitted to carry around local state.
The simplified view is pictorially represented in figure 2. Anannotated B machine output

is the same as a CSP controller output. In definition 3.6 the channela, in the controller
fragment2y a!y?z → R, is an operation name with a choice over all possible outputsy:
from the controller’s point of view, ifa is called then any outputy should be allowed. The
outputs are fresh and modelled as a distributed external choice ranging over the type given
in the B (the type is not always given in the controller definition). The channel has an input
vectorz. To accommodate analysis, finite types are used in the CSP. The same restriction
does not exist in the B. Hence the CSP representation of the B operation may not be a true
representation in terms of input and output, which may be a subset of the B types.S(p) is a
parameterised process variable. The external choice operator chooses between two process
R1 2 R2 and relates to the /*OPJ NEXT*/ annotation that has one set. The interleave operator
executes the two or more processes concurrently which will not synchronise on any events.
Theif − then−elseoperator makes the decision ony; an output of theeoperation. Recursive
definitions are given asS =̂ R. In a controller definition, all process variables used are bound
by some recursive definition.

A major constraint is enforced on the way controllers can be written. It facilitates transla-
tions, but turns out not to be so troublesome as it first appears. Controllers must start with an
initialisation (R1), then enter a main loop (S =̂ R2). This is summarized in definition 3.7. A
controllerCTRLhas a definition,R1, given in definition 3.6, in which all the parameterised
process variables are the same,S. The definition ofS is R2 and is also given in definition 3.6.
The only recursive calls allowed are toS.

Definition 3.7 (Controller Syntax with I/O)

CTRL=̂ R1

S=̂ R2

where R1 and R2 are terms from definition3.6 and

S is the only recursive variable allowed and

R2 is guarded as defined in definition3.9

The results presented in this paper require that all recursive definitions areguarded, which
means that at least one event must occur before a recursive call. The meaning of consistency
between the controller and the annotations is given in termsof the init functions. Theinit
function returns a set of operations available next and is developed in definition 3.8

Definition 3.8 (init on CSP controller process with I/O extensions)

init(2
y

a!y?z→ R1) = {a}

init(R1 2 R2) = init(R1) ∪ init(R2)

init(2
y1

a1!y1?z1 → skip ||| . . . ||| 2
yn

an!yn?zn→ skip); R= {a1, a2, ..., an}

init(if y then R1 else R2) = init(R1) ∪ init(R2)

init(S(p)) = init(R(p))

An action prefix must appear with output on the left. In the first case of theinit definition the
head of the control fragment is extracted. The outputs and inputs of the action are the same
as the outputs and inputs of the B operation. Theinit of a prefixed action is the action (event).

Theinit of a choice between two processes is the union of theinit of the individual processes.
The init of the interleaving is the set of first actions of each interleaving. Annotations clearly
show an ordering of operations: an initial operation and a set of next operations. Every oper-
ation has a prefix, and is thereforeguarded. Every control fragment must have a prefix and
hence be guarded. Theguard function is defined in definition 3.9. Prefixed operations are
guarded. A fragment with an external choice separating the two processes is prefixed if the
individual processes areguarded. Similarly with the if-then-else. The parameterised process
variable is notguarded, whereas the recursive definition is guarded if the body isguarded.

Definition 3.9 (guarded on CSP controller process with I/O)

guarded(2
y

a!y?z→ R1) = true

guarded(R1 2 R2) = guarded(R1) ∧ guarded(R2)

guarded((2
y1

a1!y1?z1 → skip |||

. . . |||

2
yn

an!yn?zn→ skip); R) = true

guarded(if TRUE then R1 else R2) = guarded(R1) ∧ guarded(R2)

guarded(if FALSE then R1 else R2) = guarded(R1) ∧ guarded(R2)

guarded(S(p)) = false

4. I/O NEXT Consistency

Consistency between aguardedcontroller and the annotated B machine is broken down into
initial (definition 4.1) and step-consistency (definition 4.2).

Definition 4.1 (Initial-Consistency of M with respect to M CTRL) The initial-consistency
of the controller fragment R is defined as follows:

1. 2y a!y?z→ R

is initially-consistent with M if a∈ next(INITIALISATION) and
R is step-consistent with M

2. R1 2 R2

is initially-consistent with M if R1 and R2 are initially-consistent with M.

3. S(p)

is initially-consistent with M

A family of recursive definitions Ŝ= R is initially-consistent with M’s annotations if each
R is initially-consistent with M’s annotations.

[We define next(a) as the set of operations in the annotation of a.]

A controller that starts with an interleaving or a conditional control fragment is not initially-
consistent and should be avoided. An initialisation can nothave an output which rules out
the use of anif − then− elseannotation on the initialisation. Ruling out theinterleaving
annotation simplifies initial-consistency checking.

Definition 4.2 (Step-Consistency of M with respect to MCTRL) The step-consistency of
the controller fragment R is defined as follows:

1. 2y a!y?z→ R

is step-consistent with M if∀b• b ∈ init(R)⇒ b ∈ next(a), and R is step-consistent with
M.

2. R1 2 R2

is step-consistent with M if R1 and R2 are step-consistent with M.

3. (2y a!ya?za→ skip ||| 2y b!yb?zb→ skip); R

is step-consistent with M if∀e • e ∈ init(R) ⇒ e ∈ next(a) and e∈ next(b), and R is
step-consistent with M, and update(a!ya?za) ∩ update(b!yb?zb) = {}.

4. 2y e → if y then R1 else R2

is step-consistent with M if y∈ BOOL and R1 and R2 are step-consistent with M and
∀ b ∈ init (R1) ⇒ b ∈ condition true(e) and
∀ c ∈ init (R2) ⇒ c ∈ condition false(e)

where conditiontrue returns the actions that are enabled when y= true and conditionfalse
returns the actions that are enabled when y= false.

5. S(p)

is step-consistent with M

A family of recursive definitions Ŝ= R is step-consistent with M’s annotations if each R
is step-consistent with M’s annotations.

The interleaving operator can only be shown to be consistentin a very limited sense. Two
actions are allowed to occur in parallel provided they do notattempt to change the variables
used by the other action.

Definition 4.3 (Consistency)A controller R isconsistentwith the annotations of machine M
if it is step-consistent with M’s annotations and initially-consistent with M’s annotations.

The main result of this section is that ifR is consistent with the annotations of a machine
M, and the annotations ofM are consistent with machineM, then operations ofM called in
accordance with the control flow ofR will never be called outside their preconditions. We
have [9] proven a theorem that shows that this holds for the basicNEXT, and theNEXT COND

annotations. The annotations are lose enough to permit a large set of possible consistent
controllers. As such the controller is viewed as a a trace refinement of the annotations. The
controllers do not refine the annotations in a failures divergence sense. We believe, but have
not yet proven, that theNEXT PAR andNEXT SEQcan be rewritten in the basicNEXT form.

The key feature of the proof of this main result is an argumentthat no trace ofR leads to an
operation ofM called outside its precondition or guard. This is established by building up the
traces ofR and showing that at each step an operation called outside itsprecondition cannot
be introduced, by appealing to the relevant annotation and applying its proof obligation.

The benefit of this main result is that the details of the operations ofM are required only for
checking the consistency of the annotations, and are not considered directly in conjunction
with the controller. The annotations are then checked against the controller using the defini-
tion of consistency above. This enables a separation of concerns, treating the annotations as
an abstraction of the B machine.

5. Refinement and Translation to Handel-C

Refining should be considered where an otherwise cumbersometranslation would result.
Narrowing down the choice of the next operation reduces the size of the implementation,
and avoids the translation process making an arbitrary choice to resolve the choice in the
annotations. The first set of refinements, given in the table in figure 3 replace annotated sets
with their subsets: non-determinism is reduced. The operation, like OPJ, quoted in the table
are all sets.

NEXT external choice refinement reduces the non-determinism in the choices that are of-
fered in the next step. TheNEXT interleave refinement reduces the non-determinism in one
or more branches of the interleave execution. TheNEXT sequential refinement reduces the
non-determinism in one or more sections of the sequence. TheNEXT conditional refinement
reduces choice in a similar way.

The second refinement table given in figure 4 outlines some algorithmic refinements. In case
1 a new set of operations are introducedOPJ. New operations can be introduced into Event-B
in subsequent refinements. In traditional Bnewoperations must be introduced beforehand
as operators that implement skip. Case 1 refines a simpleNEXT operation into a sequence
of detailed operations. The refinement sequence must end in the original next operation,
which signifies the end of the refinement chain. In case 2 a nextsequenceNEXT SEQ to next
interleave refinementNEXT PAR is depicted. It is possible if the operations that would make
up the sequence are independent: they neither read nor writeto similar variables.

A translations guide for annotations is given in the the table in figure 5 and figure 6. This is a
guide because without the knowledge of the control structure, in particular the points of recur-
sion, a translation can not be automated. However, the annotations do differentiate between
internal and external B operations, which has an impact on the final structure of the code. The
CSP controller is required to get a full picture for translation and the table in figure 16 and

Annotation Refinement type

1 OPi =̂ ...OPJ NEXT OPi =̂ ...OP′

J NEXT next
external
choice
refinement

2 OPi =̂ ...OPJ OPK NEXT PAR OPi =̂ ...OP′

J OP′

K NEXT PAR next
interleave
refinement

OPj1 =̂ ...OPX NEXT OPj1 =̂ ...OPX NEXT
· · · · · ·
OPj n =̂ ...OPX NEXT OPjn =̂ ...OPX NEXT

OPk1 =̂ ...OPX NEXT OPk1 =̂ ...OPX NEXT
· · · · · ·
OPkn =̂ ...OPX NEXT OPkn =̂ ...OPX NEXT

3 OPi =̂ ...OPJOPP NEXT SEQ OPi =̂ ...OP′

JOP′

PNEXT SEQ next
sequential
refinement

OPj1 =̂ ...OPP NEXT OPj1 =̂ ...OPP NEXT
· · · · · ·
OPj n =̂ ...OPP NEXT OPjn =̂ ...OPP NEXT

4 OPi =̂ ...OPJOPP NEXT COND OPi =̂ ...OP′

JOP′

PNEX COND next
condition
refinement

OPj1 =̂ ...OPP NEXT OPj1 =̂ ...OPP NEXT
· · · · · ·
OPj n =̂ ...OPP NEXT OPjn =̂ ...OPP NEXT

where OP′J ⊆ OPJ and
OP′

K ⊆ OPK

Figure 3. NEXT Refinements - Reduction of Non-determinism.

to some extent the table in figure 1 illustrates how translation of the control can proceed. As
mentioned, the translation of a particular annotated operator is dependent on whether the op-
eration is an internal or external operation. Internal operations can execute immediately after
invocation. The execution of an external operation must wait for external stimulus: a change
in the command input bus. A wait loop is introduced to poll theappropriate input bus until
an external operation invocation is detected:wait on Some annotated operators have
restrictions on their I/O mode. External operators are marked with/∗ext∗/. TheNEXT PAR

can only be associated with internal operations next. TheNEXT SEQ must have an external
operator at the head of the sequence and internal operationsfollowing. This restriction relates
to the way this annotation is used in refinement. The CSP controller does not differentiate
between internal and external operations. Hence the tablesin figures 5, figure 6, 15, 16, and

Annotation Refinement type

1 OPi =̂ ...OPX NEXT OPi =̂ ...OPJ OPX NEXT SEQ introduction
of

OPj1 =̂ ...OPX NEXT new
operation

OPj n =̂ ...OPX NEXT

2 OPi =̂ ...OPJ OPP NEXT SEQ OPi =̂ ...OPJOPPNEXT PAR next
sequence

OPj1 =̂ ...OPP NEXT OPj1 =̂ ...OPP NEXT to
interleave

· · · · · · refinement
OPjn =̂ ...OPP NEXT OPj n =̂ ...OPP NEXT

variable used({OPj, . . . , OPk})
∩
variable used({Opp, . . . , OPq})
= {}

Figure 4. NEXT Refinements - Structural Refinements.

1 are all required to obtain a translation.

In the table in figure 5 and figure 6NEXT a annotation with one next operation translates
to a sequence of two operations. If the second operation is aninternal operation then it is
case 1: all its inputs are not ported. If the second operationis an external operation (all
inputs are ported) then case 2 is the translation template. The controller will wait until a new
command arrives then execute the external operation if it was requested. Case 3, sequential
arrangement of external operations, is restricted to external operations only. A translation of
a sequence that starts with one operation then has a choice ofseveral external operations will
test each input set and execute the first operation for which the input has change since its
last execution. (The new input values must be latched in.) Interleave action is only permitted
between internal operations (case 4): those that take theirinput from internal variables. The
Handel-Cpar statement ensures that all the branches when complete wait until the longest
(in terms of clock cycles) has completed. The conditional operator can be used for internal
or external action. In the table in figure 6 case 5 is the translation of theNEXT SEQ. In
the previous section theNEXT SEQ was introduced to support refinement: a basicNEXT is
refined into a sequence of operationsNEXT SEQ. To refine an operation that both inputs and
outputs, a sequence of operations must input at the beginning of the sequence and output at
the end of the sequence. Case 5 reflects this requirement: thefirst operation in the sequence is
an external operation that inputs and the final operation is an internal operation that outputs.

The translations of Stepney [16], and Phillips and Stilles [12] are given in table 1. Only
the translation of parametrisable integer declaration, functions, and recursion are used. This
is because our source is not CSP (it is annotated B and CSP) as such channels are not be-
ing used to synchronise events. In the table the CSP languageconstruct and translation are
mapped. A tick is inserted if they are supported by Stepney (SS) or Phillips and Stilles (PS).
When an operation is invoked it takes its input from the environment from the port. Internal
synchronisation of operations within machines is not dealtwith in this paper. To guide the B
translation the table in figure 15 has been developed. A discussion of the example is given in

Annotation Handel-C Translation FragmentComment

1 OPi =̂ ...{OPj1}NEXT yi = OPi(vi) ; yj1 = OPj1(vj1) internal
single next

opi !yi?zi → (opj1!yj1?zj1 → . . . translation

2 OPi =̂ ...{OPj1}NEXT yi = OPi(vi) ; external
/ ∗ ext∗ /OPj1 =̂ ... wait on OPj1 ; single next
opi !yi?zi → (opj1!yj1?zj1 → . . . if in = OPj1 translation

then yj1 = OPj1(vj1)}
else delay;

3 / ∗ ext∗ /OPi =̂ . . . yi = OPi(zi) ; external
{OPj1, . . . , OPjn}NEXT wait on OPj1 . . . OPjn ; multiple

if in = OPj1 next
then yj1 = OPj1(vj1) choice
else . . . translation

. . .
opi !yi?zi → (opj1!yj1?zj1 → . . .2 . . . if in = OPjn

2 then yjn = OPjn(vjn)
opj n!yj n?zj n→ . . .) else skip

4 OPi =̂ ...OPj OPk NEXT PAR seq{yi = OPi(vi), internal
par{yj = OPj(vj), next

yk = OPk(vk) interleave
OPj =̂ ...OPX NEXT } translation

}
OPk =̂ ...OPX NEXT

opi !yi?zi → (opj!yj?zj → . . .)‖
(opk!yk?zk→ . . .)

Figure 5. NEXT Annotation Translation Guide Part 1.

section 6.

6. Example: Safe Control System

We use the example of a safe locking system to illustrate the ideas introduced in the previous
sections. The abstract specification outlines the operations of the environment. The operations
that are invoked by the environment are indicated with/ ∗ ext ∗ / annotations. Both the
operation output and the operation can be marked with/ ∗ ext∗ / annotations. All/ ∗ ext∗ /
annotation outputs are ported and become part of the Handel-C interface output. All/∗ext∗/
operations are associated with a bus port that has a state of the same name as the operation.
Variables intended as input are marked with/ ∗ IN ∗ /. It is possible to mark the variables as

Annotation Handel-C Translation FragmentComment

5 OPi =̂ ...OPJ OPK NEXT SEQ yi = OPi(vi), wait on OPJ next
sequential

if in = OPj1 translation
/ ∗ ext∗ /OPj1 =̂ ...OPK NEXT then yj1 = OPj1(vj1)
· · · else . . .
/ ∗ ext∗ /OPjn =̂ ...OPK NEXT . . .

if in = OPj n
OPk1 =̂ ... then yj n = OPjn(vj n)

else skip
OPkn =̂ ... ;

yk1
= OPk1(vk1)

opi!yi?zi → (opj1!yj1?zj1 → . . . 2
. . .2

opjn!yj n?zjn→ . . .);
(opk1!yk1

?zk1 → . . .2
. . .2

opkn!ykn?zkn→ . . .)

6 / ∗ ext∗ /OPi =̂ . . . y = OPi(vi), external
OPJ OPK NEXT COND if y next

{wait on OPJ ; condition
if in = OPj1 translation
then yj1 = OPj1(vj1)
else . . .

OPj1 =̂ ...OPK NEXT . . .
· · · if in = OPj n

then yj n = OPjn(vj n)
else skip

OPjn =̂ ...OPK NEXT }
else

OPk1 =̂ ...OPK NEXT {wait,
· · · if in = OPk1

then yk1
= OPk1(vk1)

else . . .

OPkn =̂ ...OPK NEXT . . .
if in = OPkn

then ykn = OPkn(vkn)
else skip

opi!yi?zi → (opj1!yj1?zj1 → . . . 2 }
. . .2

opjn!yj n?zjn→ . . .);
(opk1!yk1

?zk1 → . . .2
. . .2

opkn!ykn?zkn→ . . .)

Figure 6. NEXT Annotation Translation Guide Part 2.

Table 1. Existing CSP to Handel-C Translation Guide.

Feature CSPM Handel-C PS SS

Channel Declarations channel chan, chanin, chanout X

(from use)

Channel Declarations channel c chan SYNC c; X

Typed Structured channel d : T.T chan struct dDATA d X

Channel Declarations

Input Channel Operations in?x in?x; X X

Output Channel Operations out!x out!x; X X

Integer Declarations int 8 x; X X

Parametrisable functions p(n) = ... void(n)... X X

External Choice [] prialt ... X X

Synchronous Parallel [| { | ... | } |] par ... X X

Replicated Sharing Parallel [| Event|] n: { i..j }•P(n) par (n=i; n¡=j; ++n)P(n); X

Recursion P = ...→ P while(1) ... X X

Conditional Choice if b then P else Q if (B) then P(); else Q(); X

Macros {- ... -} ... X

/∗IN∗/ or /∗OUT∗/. Along with the mode the width of the type is given in bits. Operations
are invoked in two ways. The first way has already been introduced; an/ ∗ ext∗ / operation
will have a input bus associated with it, which when set to theoperator name will invoke the
operation when it is enabled by the control flow. Operations not labelled with/ ∗ ext∗ / are
internal and are invoked immediately when enabled by the control flow.

6.1. The Example’s State and Control Flow

In figure 7 the B Abstract Machine for the safe is given. There are three command states
Locked, Unlocked, andBrokenOpenwhich are represented in two bits. The variableDoor is
drawn from theCOMMANDtype and initialised toUnlocked. TheLockoperation is enabled
after initialisation. It is an external operation with externally ported output. After setting the
Door state variable toLocked, UnlockedandBreakOpenare enabled. For completeness we
introduce two operations that will be used later to develop the detailed functionality of the
machine during refinement. These operations areUnlockR1 andUnlockR2. Their bodies are
not expanded. TheUnlock is an external operation and has externally ported output. It non-
deterministically decides to set theDoor variable toUnlockedor Locked. The next operator
to be enabled depends on the outcome of theUnlockoperation. IfUnlockedwas chosen then
the next enabled operation isLock, otherwiseUnlockedor BreakOpenwill be offered. The
BreakOpenoperation sets theDoor state toBrokenOpenand offers itself as the next operation
available.

The controllerCTRL given in figure 8 first performs aInitialisation then aLock and then
jumps to theS process where it can perform either anUnlock or BreakOpen. The Unlock
event has a single output that is used as the conditional testin the if-then-else following the
Unlockevent. If the output of theUnlockoperation is true then the flow of control is repeated
starting again atCTRL, if it is false then control is repeated atS

MACHINE Safe

SETS COMMAND= { Locked, Unlocked, BrokenOpen}/*2*/

VARIABLES Door

INVARIANT Door ∈ COMMAND /*OUT2*/

INITIALISATION Door := Unlocked /*{ Lock } NEXT */

OPERATIONS

/*ext*/ Status←− /*ext*/ Lock =̂

PRE Door = UnlockedTHEN Door := Locked‖ Status:= LockedEND

/* { Unlock, BreakOpen} NEXT */ ;

UnlockR1 (Comb1a,Comb1b) =̂

PRE Comb1a∈ NAT ∧ Comb1b∈ NAT THEN skip ;
UnlockR2(Comb2a,Comb2b) =̂

PRE Comb2a∈ NAT ∧ Comb2b∈ NAT THEN skip ;
/*ext*/ Status←− /*ext*/ Unlock =̂

PRE Door = Locked
THEN

ANY dd WHERE dd : COMMAND - { BrokenOpen}

THEN

IF (Unlocked = dd) THEN Status:= 1 ELSE Status:= 0 END ‖

Door := dd

END

END /* { Lock } { UnLock,BreakOpen} NEXT COND */ ;

/*ext*/ Alarm ←− /*ext*/ BreakOpen =̂

PRE Door ∈ COMMAND THEN Door := BrokenOpen‖ Alarm := 1 END

/* { BreakOpen} NEXT */ ;
END

Figure 7. Safe Machine

6.2. A Refined Example

A refinement of theSafemachine, called SafeR, is given in figure 9 and figure 10 . It is,within
a B framework, mimicking refinement in Event-B. The operationUnlockR1 andUnlockR1 are
introduced to refineUnlock. The laws of refinement of Event-B are not fully justified. There-
finedSafeREFINEMENT, SafeR, breaks down the Unlocking process into two stages. Firstly,
a two new operation are slotted into the control in parallel:UnlockR1(Comb1a, Comb1b)
andUnlockR2(Comb2a, Comb2b). Both have a combination parameter which is compared
against a stored master code and a secondly parameter that isused to create a new master key.
The UnlockRcommands update the master combination if a sucessful comparison occurs.
New input variables are added:Cx1a, Cx2a, Cx1b, andCx2b. These are used to input the
combination values and are not used by the B Operations.Checked1, Checked2, Master1 and
Master2 are new variables used by the operations. The annotations oftheLockoperation are

CTRL=̂ Initialisation→ 2
y

Lock!y→ S

S=̂ (2
y

Unlock!y→ (if y then 2
y

Lock!y→ CTRL else S))2

(2
y

BreakOpen!y → B CTRL)

B CTRL=̂ 2
y

BreakOpen!y → B CTRL

Figure 8. Safe Machine Controller.

refined. Two operation are added before theUnlock. The extra proof obligations can be dis-
charged. The bodies of theUnlockRandRekey(Comb2) are completed at this level. The body
of theUnlockoperation is refined. The annotations of theUnlockare refined: theBreakOpen
operation is removed as an option. What was one unlock operation has been expanded into
three (two inparallel). Before refinement theUnlock operation has both input and output.
The refined version has the input occuring on the first operations in the refined sequence of
operations (UnlockR1 andUnlockR2), and the output occuring on the final operation of the
sequence (the originalUnlockoperation).

The controller given in figure 11 starts off like the abstractprocess with anInitialisation
and aLock then a jump toS. There is in this refined process no choice tobreakOpen, only
UnlockR1and UnlockR2 are offered withCx1a and Cx1b and Cx2a and Cx2b are offered
as an input,respectively. TheUnlockRprocess is the first in a sequence of processes that
refines the originalUnLockprocess. The refined sequence starts with a parallel combination
of UnlockR1 andUnlockR2 events then the originalUnlockevent, at which point the output
is given. As before the outcome ofUnlockdetermines what happens next. If theUnlockwas
successful the process will be restarted from the beginning. If the current attempt at locking
failed then another go atUnlock will occur. It is noted that theLock→ S could have been
replaced byCTRL. However, the former is easier to translate.

6.3. A Hand Translation using the Guidance

A summary of the hand translations on the refined B specification is given in the table in
figure 15. The B provides the details of the types, variables,and functions. The CSP controller
provides the executions details that are use later to construct the Handle-C main section. A
summary of the hand translation of the controller is given inthe table in figure 16

First we review the B translation. TheSETSclause is translated into an enumerated type.
The INVARIANTsection is used to create the declarations. Variables annotated with a mode
will be created as buses of the appropriate I/O type and size.Other variables will be cre-
ated. Variables which will be bound to ports are created. Each operation which is external
is associated with a command input bus of the same name as the machine. The mechanism
for requesting an external operation to execute is to changethe data on the command input
bus to the same name as the operation required. The last requested operation is latched into
variable of the same name as the refined machine with a. var post fix. Variables are de-
clared for operation outputs. The names of the output bus variables are a concatenation of the
operation output name and the operation name. This avoids clashes with similar operation
output names. Buses are defined for each/ ∗ IN ∗ / and/ ∗ OUT ∗ / annotation, external
operation, and operation output. Each operation is translated into a function. If an operation
has an output the function will return a value. Functions with outputs will have an assign-

REFINEMENT SafeR

REFINES Safe

VARIABLES Door, Cx1a, Cx2a, Cx1b, Cx2b,
Master1, Checked1 Master2, Checked2

INVARIANT

Cx1a∈ NAT/*IN16*/ ∧ Cx2a∈ NAT/*IN16*/ ∧
Cx1b∈ NAT/*IN16*/ ∧ Cx2b∈ NAT/*IN16*/ ∧

Master1∈ NAT/*16*/ ∧ Checked1∈ NAT/*1*/ ∧

Master2∈ NAT/*16*/ ∧ Checked2∈ NAT/*1*/

INITIALISATION

Door:=unlocked‖ Cx1a:=0 ‖ Cx2a:=0 ‖ Cx1b:=0 ‖ Cx2b:=0 ‖

Master1:=67‖ Checked1:=0 Master2:=76‖ Checked2:=0 /* { Lock } NEXT */

OPERATIONS

/*ext2*/ Status←− /*ext1*/ Lock =̂

PRE

Door = Unlocked

THEN

Door := Locked‖ Status:= Locked‖ Checked1:= 0 ‖ Checked2:= 0
END

/* { UnlockR1(Cx1a,Cx1b), UnlockR1(Cx2a,Cx2b)} { Unlock} NEXT SEQ */

/* { UnlockR1(Cx1a,Cx1b)} { UnlockR1(Cx2a,Cx2b)} NEXT PAR */ ;
/*ext1*/UnlockR1(/*16*/Comb1a,/*16*/Comb1b) =̂

PRE

Door = Locked
THEN

IF

(Comb1a = Master1)

THEN

Checked1:= 1 ‖ Master1:= Comb1b
ELSE

Checked1:= 0
END

END /* { Unlock} NEXT */ ;

Figure 9. Safe Refinement Part 1.

ment in them that assigns to the bus output function variable. The function will also return
that output in the final statement of the function. Assigningto the function output variable
and writing it to a output port as well allows it to be put out onthe output bus, and used
internally in the Handel-C program. The bodies are translated in a straightforward manner.
Assignments in the operations are put together in apar Handel-C statement. Assignment and

/*ext1*/UnlockR2(/*16*/Comb2a,/*16*/Comb2b) =̂

PRE

Door = Locked
THEN

IF

(Comb2a = Master2)
THEN

Checked2:= 1 ‖ Master2:= Comb2b
ELSE

Checked2:= 0
END

END /* { Unlock} NEXT */ ;
/*ext2*/Status←− Unlock =̂

PRE

Door = Locked
THEN

Status:= Checked‖

IF

(Checked1 = 1) ∧ (Checked2 = 1)

THEN

Door := Unlocked

ELSE

Door := Locked

END

END /* { Lock } { UnlockR} COND NEXT */ ;
/*ext*/ Alarm ←− /*ext*/ BreakOpen =̂

PRE Door ∈ COMMAND THEN Door := BrokenOpen‖ Alarm := 1 END

/* { BreakOpen} NEXT */
END

Figure 10. Safe Refinement Part 2

CTRL=̂ Initialisation→ 2
y

Lock!y→ S

S=̂ (UnlockR1?Cx1a?Cx1b→ skip ||| UnlockR1?Cx2a?Cx2b→ skip)→

2
y

Unlock!y→ (if y then 2
y

Lock!y→ S else S)

Figure 11. Refined Safe Controller.

the if − then− elseB constructs have straightforward translations. The refined B example is
limited to assignment andif − then−else. TheINITIALISATIONis translated into a function
calledInitialisation fnc.

The CSP controller is used to construct the main Handel-C body. A summary of the hand

//set clock = external "Clock";

#define PAL_TARGET_CLOCK_RATE 25175000

#include "pal_master.hch" ///////////////

// BreakOPen removed in translation as

// not used and no command default added

typedef enum {Not_Commanded =

(unsigned 2) 0, Locked, Unlocked} COMMAND; //

typedef enum {No_Command =

(unsigned 2) 0, Lock, UnlockR1, UnlockR2} SafeR;

unsigned 2 Door; // B variables

unsigned 1 Checked1; //

unsigned 16 Master1; //

unsigned 1 Checked2; //

unsigned 16 Master2; //

SafeR SafeR_Bus_var; // latch input bus values to

// request operation execution

unsigned 1 Status_Unlock; // operation output values

unsigned 2 Status_Lock; //

interface bus_in(unsigned 16 inp) Cx1a(); // IN annotations

interface bus_in(unsigned 16 inp) Cx2a(); //

interface bus_in(unsigned 16 inp) Cx1b(); // IN annotations

interface bus_in(unsigned 16 inp) Cx2b(); //

interface bus_in(SafeR 2 inp) SafeR_Bus(); // ext operations

interface bus_out() Door1 (unsigned 2 OutPort=Door); // OUT an.

interface bus_out()

Status_Unlock1 (unsigned 1 OutPort=Status_Unlock); //

Figure 12. SafeR Translation Part 1a.

translations made on the CSP controller are given in the table in figure 16. The controller
design was structurally limited to facilitate translation: initialisation and setting up operations
are performed before a main loop is entered. The first processdefinition CTRL fnc is not
recursive; it is an open process. It translates to a functioncall CTRL fnc, which invokes the
Initalisation fnc and lock fnc functions. On returning to the main program the next func-
tion called is theS fnc, which implements the main loop.S fnc is tail recursive and is im-
plemented with a continuously looping while loop; it is a closed process. The first event in
the main loop is theUnlockRcommands. In the translation theUnlock fnc is preceded by
wait Unlock fnc as it is an external operation. TheUnlockR fnc functions inputs from the
Cx1a, Cx1b, Cx2,andCx2 input buses. TheUnlock fnc call follows. Unlock fnc returns a
value that is assigned to a variable that is output ported. The value is also used to decide the
course of the following if-then-else. Either aLock fncor anUnlockR fnc is performed after
a wait. Then the process recurses.

7. Discussion

This paper has introduced a way of refining annotations that support Event-B style refine-
ment, and set out a guide for translation to an HDL, within theB annotation framework. We
have demonstrated how the framework previously presented can be extended for both tra-
ditional B and Event-B. Our approach sits naturally with refinement. Refinement and trans-
lation are still being considered for CSP‖B. In fact the B annotation approach offerers sev-

void wait_on_Lock_fnc (){

while (SafeR_Bus.inp != Lock){delay;}

SafeR_Bus_var = Lock;

}

unsigned 2 Lock_fnc(void){

par{

Door = Locked;

Status_Lock = Locked;

}

return Locked;

}

void wait_on_UnlockR1_fnc(void){

while (UnlockR1.inp != UnlockR1){delay;}

SafeR_Bus_var = UnlockR1;

}

void UnlockR1_fnc(unsigned 16 Comb1a; unsigned 16 Comb1b;){

if (Comb1a == Master1) {

par{Checked1 = 1, Master1 = Comb1b};

}

else

{Checked1 = 0;}

}

void wait_on_UnlockR2_fnc(void){

while (UnlockR2.inp != UnlockR2){delay;}

SafeR_Bus_var = UnlockR2;

}

void UnlockR2_fnc(unsigned 16 Comb2a; unsigned 16 Comb2b;){

if (Comb2a == Master2) {

par{

Checked2 = 1,

Master2 = Comb2b};

}

else

{Checked2 = 0;}

}

Figure 13. SafeR Translation Part 1b.

eral approaches to refinement: refinement of control flow only, state only, or control flow
and state. The extensions to the annotations are fairly richand now include annotations to
support: next selection, sequencing, conditional, parallel execution, and I/O. The inability to
define points of recursion has led to a reliance on a CSP controller. We restricted this paper to
the consideration of fixed variables as operation inputs, and permitted no scope for controller
state. Work on CSP state and defining recursive points in the annotations is currently ongo-
ing. More work is required to automate the translation and develop the proof of the theorem
to cover interleaving.

Acknowledgements

The extensions to the refinement have benefited from conversations with Stefan Hallestede
and Helen Treharne. Thankyou for the encouraging comments from the refers and detaled

lists of erroreta, improvments and additions.

References

[1] J-R. Abrial. The B-Book: Assigning Programs to Meaning. Cambridge University Press, 1996.
[2] J-R. Abrial. Event driven circuit construction version5. MATISSE project, August 2001.
[3] J-R. Abrial and L. Mussat.Event B Reference Manual. ClearSy, 1999.
[4] A. Aljer and P. Devienne. Co-design and refinement for safety critical systems. In19th IEEE International

Symposium on Defect and Fault Tolerance in VSLI Systems (DFT’04), pages 78–86, 2004.
[5] P. T. Ashenden.The Designer’s Guide to VHDL. Morgan Kaufmann, 1996.
[6] C. Fischer. CSP-OZ: A combination of Object-Z and CSP.
[7] C. A. Hoare.Communicating Sequential Processes. Prentice-Hall International, Englewood Cliffs, New

Jersey, 1985.
[8] W. Ifill. Formal development of an example processor (AEP) in AMN, C and VHDL. Computer science,

University of London, Computer Science Department, Royal Holloway, University of London, Egham,
Surrey TW20 OEX, Sept 1999.

[9] W. Ifill, S. Schneider, and H. Treharne. Augmenting B withcontrol annotations. In J. Julliand and
O. Kouchnarenko, editors,B2007:Formal Specification and Development in B, volume 4355 ofLNCS.
Springer, January 2007.

[10] W. Ifill, I. Sorensen, and S. Schneider.High Integrity Software, chapter The Use of B to Specify, Design
and Verify Hardware. Kluwer Academic Publishers, 2001.

[11] Alexandre Mota and Augusto Sampaio. Model-checking CSP-Z: Strategy, tool support and industrial
application.Science of Computer Programming, 40(1):59–96, May 2001.

[12] J. D. Phillips and G. S. Stilles. An automatic translation of CSP to Handel-C. In I. East, J. Martin, P. Welch,
D. Duce, and M. Green, editors,Communicating Process Architecures 2004. IOS Press, 2004, 2004.

[13] A. W. Roscoe.The Theory and Practice of Concurrency. Prentice-Hall, 1998.
[14] S. Schneider.Concurrent and Real-time Systems: The CSP Approach. John Wiley and Sons, 1999.
[15] S. Schneider.The B-Method: An introduction. Palgrave, 2002.
[16] S. Stepney. CSP/FDR2 to Handel-C translation. Technical report, University of York, June 2003.
[17] H. Treharne.Combining Control Executives and Software Specifications. PhD thesis, Royal Holloway,

University of London, 2000.
[18] H. Treharne and S. Schneider. Communication B machines. In ZB2002, 2002.

unsigned 1 Unlock_fnc(void){

par{

if (Checked == 1) {Door = Unlocked;} else {Door = Locked;}

Status_Unlock = Checked;

}

return Checked;

}

void Initialisation_fnc(void){

Checked = 0;Master = 67;Door = Unlocked; // INITIALISATION

Status_Lock = 0;Status_Unlock = 0; // SET OUTPUT DEFAULT

}

void CTRL_fnc(void){

Initialisation_fnc; wait_on_Lock_fnc();

if (SafeR_Bus_var == Lock){Lock_fnc();}else{delay;}

}

void S_fnc(void){

while(1){par{

seq{wait_on_UnlockR1_fnc();

if (SafeR_Bus_var==UnlockR1){

UnlockR1_fnc(Cx1a.inp,Cx1b.inp)}

else

{delay;}

} // seq

seq{wait_on_UnlockR2_fnc();

if (SafeR_Bus_var==UnlockR2){

UnlockR_2fnc(Cx2a.inp,Cx2b.inp)

}

else

{delay;}

} // seq

} // par

Status_Unlock = Unlock_fnc();

if (Status_Unlock){

wait_on_Lock_fnc();

if (SafeR_Bus_var==Lock){

Lock_fnc();

}

else

{delay;}

}

else

{delay;}

}

} //while

}

void main(void){

CTRL_fnc;S_fnc;

}

Figure 14. SafeR Translation Part 2.

Feature B Handel-C
set SETS SS= typedef enum{ AA =

AA,...,XX/*n*/ (unsigned n) 0, ..., XX} SS;
declaration
B variable INVARIANT unsigned n Vv;
declaration Vv ∈ TT /*OUTn*/ interface busout()

Vv1 (unsigned 2 OutPort=Vv);
INVARIANT unsigned n Vv;
Vv ∈ TT /*INn*/ interface busin(unsigned n inp) Vv();
INVARIANT unsigned n Vv;
Vv ∈ TT /*n*/

Function /*extN*/ Oo unsigned 1 Ccvar;
Declaration ←− /*ext*/ Cc(/* M */Zz) interface busout ()

Oo Cc1 (unsigned N OoCc);
interface busin(unsigned 1 inp) Cc ();

void wait on Cc fnc()
{ while (Cc.inp == Cc var){ delay;}

Cc var = Cc.inp;
}
unsigned N Ccfnc(unsigned M Zz){

par{. . .;};return exp;
}

Function PREP THEN B END par{<< B >>}
Body

IF b THEN c ELSEd END if << b >> { << c >> }
else{ << d >> } ;

b :=c << b >> = << c >> ;
initialisation INITIALISATION . . . void Initialisation(void){ . . .; }
main OPERATION void main(void){ Initialisation;. . . }

Figure 15. B to Handel-C Translation Guide.

Feature CSP Handel-C
initialisation P=̂ . . . R P fnc();Q fnc();
processes void P fnc(void){. . .;}
main loop R=̂ . . . R R fnc();
processes void R fnc(void){while(1){. . .;}}
prefix (internal) < e→ P> e fnc ; <P>
prefix (external) < e→ P> wait on e; e fnc ; <P>
choice (external) < P12 P2> <P1>
interleaved < e1→ skip PAR{< e1 → skip>;

||| . . . ||| . . . ; < en→ skip>}; < P >
en→ skip; P >

if-then-else <if y then P else Q> if y {<P>} else{<Q>}
where< P >
is the translation of P

Figure 16. CSP to Handel-C Translation Guide.

