AllStall’ A. vVICEWan, steve scnnelaer, vvliison Iifil, ana Favencn
10S Press, 2007

A Step Towards Refining and Translating
B Control Annotations to Handel-C

Wilson Ifill b and Steve Schneider

@ AWE Aldermaston, Reading, Berks, England; Email. ifilleawe.co.uk
> Department of Computing, University of Surrey, Guildf@dysrey, England.

{W.Ifill, S.Schneider } @surrey.ac.uk

Abstract. Research augmenting B machines presented at B2007 has steatedh
how fragments of control flow expressed as annotations caadbed to associated
machine operations, and shown to be consistent. This endbfgners’ understand-
ing about local relationships between successive opesatiobe captured at the point
the operations are written, and used later when the coetiisldeveloped. This paper
introduces several new annotations and 1/O into the framlewmtake advantage of
hardware’s parallelism and to facilitate refinement andgiaion. To support the new
annotations additional CSP control operations are add#tetoontrol language that
now includes: recursion, prefixing, external choice, #kelse, and sequencing. We
informally sketch out a translation to Handel-C for profuityg.

Keywords. B Metrhod, CSP, Hardware Description Language,

Introduction

Annotating B-Method specifications with control flow dinsets enables engineers to de-
scribe many aspects of design within a single notation. e igee proof obligations (pob’s)
to demonstrate that the set of executions allowable by thetations of a B [1] [15] machine
do not cause operations to diverge. The benefit of this apprisathat only the semantics of
the machine operations are required in checking the anonsatand these checks are sim-
ilar in size and difficulty to standard B machine consistedlegcks. Controllers written in
CSP, which describe the flow of control explicitly, can be ctezl against the annotations.
There is no need to check the CSP [7] [13] [14] directly agatims full B description. Once
the annotations are shown to be correct with respect to thaéhime we can evaluate con-
trollers against the annotations without further refeeetewthe machine. Machines can be
refined and implemented in the normal way while remainingsciant with the controller.
In previous work [9] we presented tNEXT and FROM annotations, which permitted sim-
ple annotated B specifications and controllers to be wriafiore that [10] we presented a
route to VHDL [5], a hardware description language, fromBtHis paper we present three
more annoationNEXT_SEQ, NEXT_PAR andNEXT_COND and add input andoutput to the
operations. We also begin to present an informal refinentesdry for annotations and a
route to implementation via HandelC. The refinement theomjiree in this paper allows the
annotations to be independently refined and remain consistth the Machine.

Previous work obtaining hardware implementations from Brapched the problem by using
B as a Hardware Description Language (HDL) that translat®tDL [8] [?]. Our approach

achieves the goal of obtaining hardware via Handel-C as tamnmediate stepping stone,
which means that the B that is translated does not requiredime degree of HDL structural
conformance as does the B for VHDL translation. Approachastranslate HDLs to B for
analysis [4] do not support the development process dyteetlent B [3] has been used to
support the development of hardware circuits [2] that idekirefinement but not the code
generation process. Not only are we working towards coderg¢ion, but we wish to work
with specifications that model both state and control egustbngly. CSHB [18] [17] has
the capability to model state and event behaviour, but thHe &ftroller must be instantiated
with B components to verify the combination. We break thefiation of controllers down
into manageable stages, and offer an approach to refinementaaslation. Integrations of
CSP-Z by Moto and Sampaio [11] and CSP-OZ Fischer [6] requi@SP semantics to be
given to Z in order for integration to be analyseableas aahOlr approach differs to other
formal language integrations in two ways. Firstly, The cohflow behaviour is capture dur-
ing the development of the state operation in the form of tatran. The annotations are con-
trol specifications. Only later is a complete controllereleped that satisfies the annotations.
In this way the developer of the state operations in B cantcanscontroller behaviour, but
full controller development can be posponed. and possit®pned by a different engineer.
Secondly, there is no notion of executing the models togethe analysing this integration
for deadlocks. In this approach the different formal natagi provide different views of the
system, and both views are required to obtain a executabdieimo

This paper describes extensions to the work presented i@ B2(). This papers contribution
is the introduction of additional next annotations, inagiion of 1/0 into the annotations,
and an informal treatment of refinement and translation&letiSn 1, the general framework
Is introduced. In Section 2 a B machine is introduced alortf) ieNEXT annotation. The
proof obligations associated with the annotations androblainguage are given in Section 3.
The consistency of the annotations are given in Section éfiAement and translation outline
is given in Section 5. An example illustration of some refiess and translations are given
in section 6. A discussion on the benefits and future work égsih&ection 7.

We restrict our attention in this paper to correct B machittesse for which all proof oblig-
ations have already been discharged. Weluserefer to the invariant of the maching,to
refer to the machine’s initialisatioR; to refer to the precondition of operati@p, andB; to
refer to the body of operatioQp.

Controllers will be written in a simple subset of the CSP psscalgebraic language [7,14].
The language will be explained as it is introduced. Corgrsllare considered @socesses
performingeventswhich correspond to operations in the controlled B machiimeis opera-
tion names will appear in the controller descriptions ad ag&the B machine definitions. The
Handel-C translations are shallow and in a few cases peefdimaccordance with existing
translation work [12] [16].

1. The General Framework

The approach proposed in this paper introdumessotationson B operations as a mecha-
nism for bridging the gap between B machines and CSP coatsphvhile maintaining the
separation of concerns. The approach consists of the fimigpagomponents:

e Machine definition: the controlled component must first be defined.
e Annotations: the initialisation and the operations in the machine definiare annotated
with fragments of control flow.

e Annotation proof obligations: verification conditions that establish consistency of the
annotations with the controlled machine. This means thafidigments of control flow
captured by the annotations really are appropriate for thehme.

e Controller: this is a process that describes the overall flow of contmottie B machine.

e Consistency checkingestablishing that the controller is consistent with thaaations
by showing that that every part of the control flow is suppblig some annotation.

e Refine/Translate refinement may be needed before a translations can be adhi€kie
translation is the final step and requires additional antrmrtalirectives to set type sizes
and I/O ports.

Checking a CSP controller against a machine is thus redwcelecking it against the an-
notations and verifying that the annotations are apprtgfa the machine. The relationship
between the different parts of the approach are given inrEigju

Ann tated
ine

Machine
De |rr11|t|on

\
Discharg Refine
% ‘J\A Annotated ontroller

etween ine
De Initions De inition

S

Demonstrate i
consistency \ "?r%{}\ns a%g d
Between troller
Definitions Pnltlon

Handel-C
Implementatig

=
=

Figure 1. The Process Flow in the Approach.

The framework presented here is quite general, in that itibesgpplied to both Event-B and
classical B. Additional annotations maybe added along sigbporting control opedrations
as required. Provided that a consistency argument can ledogh@d. The first step to be taken
is therefore to fix on the control language and the assocatadtations to be incorporated
into the B machine descriptions.

2. The Approach

We will demonstrate the approach with a simple model totitate aspects of the approach.
The annotation we consider is tkexT annotation. An extremely simple controller language
consisting only of prefixing, choice, parallel, if-therse] and recursion is used to develop
the example.

2.1. A B Machine

B-Method [1] has evolved two major approaches: traditi@ahd Event-B. Annotations can
be used in either traditional B machines, or Event-B sysidmaglitional B approaches spec-
ification in a state-oriented fashion. It focuses on theisessthat a system might provide,
whereas Event-B focuses on the events that occur withinyters1. B Machines are used in
the examples. The generic traditionaMBACHINE S given below, has variables, invariant,
initialisation, and a set of operatiol®P1 through toOPnthat have inputs and outputs.

describes a set of inputs apdescribes a set of outputs to and from a operation, rerspécti

MACHINE S
VARIABLES v
INVARIANT v
INITIALISATION v:€ u
OPERATIONS
y < OPl(z;) = P; | By;
Yo «— OP2(z) = G, = By;

yn — OPr(Zn) = Pn ‘ Bn
END

The operations are defined in Guarded Substitution Lang(@§e). It is asserted that the
machine is consistent when each operation can be showratalisktthe machine invariant,
I, and the machine cannot deadlock. Every operation musttberejuarded(, or have a
preconditionP, but all must have a next annotation (not shown). In Evenirtiike classical
B, new operations can be added during refinement. In the deawg anticipate the need
for operations in the later stages of refinement by intratlyitihe signature of the operation
with a body defined by thekipoperation. We do not in this paper adapt the pobs for Event-B
refinement. The refinement process may involve adding det#iile specification in a con-
sistent way to realise an implementation, which is a keyamoith B. Refinement involves re-
moving non-determinism and adopting concrete types. Weatla concept of B refinement
with the annotations, by adding the notion of annotatiortr@flow refinement.

3. The Annotation with I/O

We annotate operations of a B machines witkexT annotation that supports operations
with I/O. If the conjunction of pob’s for all the annotatioase discharged then we say that
the annotations are consistent with the machine. A comgistantroller that evolves in ac-
cordance with the next annotations steps will not diverggeadlock. ANEXT annotation on
the current operatio®@P, (whereOP, representy;, «—— Op(z) andy; is the output vector,
Y1 ... Yn, @andz is the input parameter vecta,. . . z,) introduces another operati@P,, or
set of operation®P, , ..., OB, which will be enabled afteDP; is executed (where an oper-
ation in the annotatio®P, represent®©p (g) ands is the input expression vect®, . . . &y).

In the NEXT annotatiorg is a list of expressions which serves as inputs on widéh can
be called next. In this paper we will restrict the expressitmvariables/s defined in the B

machines which will supply inputs in the hardware implenagion. The value of this vari-
able is not considered when calculating the pob’s. Only ype of the variable used in the
annotation is checked.

3.1. The BasitéNEXT Annotation

OP = PRE P THEN BEND /[*{OPR,,...,OP,} NEXT?*;

Definition 3.1 (Proof Obligations of the Basic NEXT on INITIALISATION) Given the
following B initialisation:

INITIALISATION T/ {Op?v } NEXT; */
The following pob’s arises: [T]|((v; € Tj)) = P))

The NEXT annotation following the initialisation indicates the fiemabled operation. There
can be more than one operation in the annotation. The exaifhydrates only one next
operation. The variables used as input parameters in thaaton (v;, ... 7v;,,) must be of
the type required in the operation definition.

Definition 3.2 (Proof Obligations of the Basic NEXT on Operaions) Given the follow-
ing B operation:

Yi«—Op(z) = PRE P THEN B END
*{0p(v),--.,0p,(vi,) } NEXT */;

The related pob’s follow:

(PiAT = [Bl((v, € Ty = Py)) A

(Pi AN = [Bl]((vln S Tln) = Pjn))

where the elements of andy; are free ing;, P;, and |

3.2. The NEXTPAR Annotation

I/O operations can be annotated to indicate parallel e}@TWEXT_PAR . TwWO Oor more
sets are introduced (only two illustrated below). Any opieraof a respective set can run in
parallel with any other operation from any of the other sets.

Definition 3.3 (Proof Obligations of NEXT_PAR) Given the following B operation:

Vi«—Op(z) = PRE P THEN By END

I*{0p,(My); - -, OB (Vi) }
{ Oy, (Vp,), - -, OBy (V) } NEXT_PAR */;

The related pob’s follow:

(Pi AN = [Bi]((vh € TJ) = Ph)) A

(P AT = [Bl((Ma € Tia) = Pja)) A

(Pi AN = [Bi]((vm < TDl) = Pp1)) A

(Pi AN = [Bi]((vpn S TPn) = Ppn)) N

variable_used{OP, ,...,OPR, }) N variable_used{Op,,,...,OPy}) = {}

The parallel annotation offers the option to execute two orgroperations in parallel after

the current operation, provided they do not set or read anghlas in common. The proof

obligation ensures that all the operations in the annaotatere enabled after the current
operation. Only one from each set will be executed in pdralle

3.3. The NEXTSEQ Annotation

Operations can be annotated to indicate a requirement fartecplar sequential execution:
NEXT_SEQ

Definition 3.4 (Proof Obligations of NEXT_SEQ) Given the following B operation:
Yi<—Op(z) = PRE P THEN B END
P {0, (M) - - OB (Vin) }
{ Oppl (Vp1)> R Oppn(vpn) } NEXT—SEQ */;

The related pob’s follow:

(Pi AN = [Bi]((vh € -I-Jl) = le)) A

(Pi AN = [Bl]((vln S Tln) = Pjn)) N

(Ph AN = [Bh]((vm € TIO1) = Pp1)) A

(Ph AN = [Bh]((vpn S Tpn) = Ppn)) A

(Pin AN = [BJ]((Vm € Tp1) = Ppl)) A

(Pjn AN = [Bj]((Vpn € Tpn) = Ppn))

where the elements af andv; andv, are free inB;, P;, and |

The NEXT_SEQ annotation is conceptually different from theEXT annotation, because it

captures specific paths of executions that must exist in &ater. The current operation

Op must enable each operation{i®p, (v,), - - ., 0p,(v,)}, and each operation in that set
must enable each operation in the 88py, (Vp,), - - -, Opp, (Vp,) }. Practically, this annotation

should be used to depict particular paths: one operatioagier

3.4. The NEXTCOND Annotation

To enable the current operation to conditionally selectseteof operations next as opposed
to some other set theexT_COND annotation is used. The conditiQEXT_COND annotation
is an extension to theREXT annotation that supports conditional next path selection.

In definition 3.5 if the output of the current operationtige then all the operation®P;,
through toOP,, are guaranteed to be available to execute. If however theruoperation
returns false then the operatio@d®, through toOPR,, are guaranteed to be available to
execute. The proof of this claim can be verified by dischaygie following proof obligation
given in definition 3.5:

Definition 3.5 (Proof Obligation of NEXT _COND) Given the following B operation:
Vi«<—Op(z) = PRE P, THEN B; END
P {0, (M) - - OB (Vin) }
{ Oy, (Vp,), - - - OBoy(Vpn) } NEXT_COND */;

The related pob’s follow:

(AP = [B]((yi = TRUE AV, €T) = Pj))

A (IAPi = [B]((yi = TRUE AV, € Tj,) = Pj,))

A (l AP = [B,]((M = FALSE} AVp, € Tpl) = Ppl))

A (I APy = [B((yi = FALSE Ay, € Tp) = Py,))

The lists of theNEXT_COND annotation do not have to be the same size. The operation that
carries this annotation must have a single boolean output.

3.5. A Simple Controller Language

The next annotation represents a control fragment speaircaf the whole system. The
CSP controller represents a refined view of the annotateds®isy The annotated B ma-
chine hasn't the fidelity to clearly portray the necessanyticd detail that the CSP can: the
annotations are not clearly laid out as a set of recursivaitiefis. On translation both the B
and the CSP are used to build the implementation, hence #gtketa@levelop a controller.

B view of system CSP view of system
Environment Environment
[y
oply?z
CSP event
y «— op(2) _
B Operation

Figure 2. Different views of the same action.

A distinction is drawn between operations that respond tereal commands and those that
are driven internally. A development will begin with a daption of a number of operations:
things that the system must do when commanded. During thel@@went refinements will
introduce internal operations. We distinguish betweerreal and internal operations by
marking the external operations with« ext+ / annotations, which are discussed in more
detail in the refinement and translation section 5.

Definition 3.6 details the CSP subset of control fragmenésius this paper: event prefix,
choice, interleaving, if-then-else, and recursion cdntro

Definition 3.6 (Controller Syntax with I/O)

R:::ga!y?z—> R|
RIOR2 |
(y[1] aily; 7z; — skip||| ... ||| yEnlan!yn?zn — skip R) |
ge!y —ifythenR else R |

Sp)

In this paper the CSP controller is a different view of the@ated B specification. A more
complex arrangement arises if the CSP controller is peethitd carry around local state.
The simplified view is pictorially represented in figure 2. Annotated B machine output

is the same as a CSP controller output. In definition 3.6 trenwcéla, in the controller
fragmentdyaly?’z — R, is an operation name with a choice over all possible outputs
from the controller’s point of view, if is called then any outpwt should be allowed. The
outputs are fresh and modelled as a distributed externate&manging over the type given
in the B (the type is not always given in the controller defam). The channel has an input
vectorz. To accommodate analysis, finite types are used in the CSPsdime restriction
does not exist in the B. Hence the CSP representation of thgeBabon may not be a true
representation in terms of input and output, which may bebaetuof the B typesS(p) is a
parameterised process variable. The external choice top&taooses between two process
R1 O R2 and relates to the /®P; NEXT*/ annotation that has one set. The interleave operator
executes the two or more processes concurrently which wilspnchronise on any events.
Theif —then— elseoperator makes the decision gran output of the operation. Recursive
definitions are given aS= R. In a controller definition, all process variables used anenlal

by some recursive definition.

A major constraint is enforced on the way controllers can bigem. It facilitates transla-
tions, but turns out not to be so troublesome as it first agp€&ontrollers must start with an
initialisation (R1), then enter a main looB(= R2). This is summarized in definition 3.7. A
controllerCTRLhas a definitionR1, given in definition 3.6, in which all the parameterised
process variables are the sar8€eThe definition ofSis R2 and is also given in definition 3.6.
The only recursive calls allowed are $o

Definition 3.7 (Controller Syntax with 1/O)

CTRL=RI1
S=R2
where R and R are terms from definitiof.6 and
S is the only recursive variable allowed and
R2 is guarded as defined in definitiGro

The results presented in this paper require that all reeidfinitions argguarded which
means that at least one event must occur before a recurdliv€leameaning of consistency
between the controller and the annotations is given in tevhibe init functions. Thenit
function returns a set of operations available next andveldged in definition 3.8

Definition 3.8 (init on CSP controller process with I/O extersions)

init(? aly’z— Rl)={a}
init(R1 O R2) =init(R1) U init(R2)
init(yD1 aly; 7z, — skipl|] ... || yEnlan!yn?zn — skip); R={a;,a, ..., an}
init(if y then R else R) =init(R1) U init(R2)
init(S(p)) = init(R(p))

An action prefix must appear with output on the left. In the iisse of thenit definition the
head of the control fragment is extracted. The outputs apdtgof the action are the same
as the outputs and inputs of the B operation. ihieof a prefixed action is the action (event).

Theinit of a choice between two processes is the union oirtih@f the individual processes.
Theinit of the interleaving is the set of first actions of each intrieg. Annotations clearly
show an ordering of operations: an initial operation andt@feext operations. Every oper-
ation has a prefix, and is therefogaarded Every control fragment must have a prefix and
hence be guarded. Thguard function is defined in definition 3.9. Prefixed operations are
guarded A fragment with an external choice separating the two Bses is prefixed if the
individual processes aguarded Similarly with the if-then-else. The parameterised pesce
variable is noguarded whereas the recursive definition is guarded if the bodyerded

Definition 3.9 (guarded on CSP controller process with 1/O)

guardec{g aly’z— R1) =true
guardedR1 O R2) = guardedR1) A guardedR2)
guardec{(yD a;!y;?7z; — skip|||
1

yDan!yn?zn — skip); R) =true

=

guardedif TRUE then R else R
guardedif FALSE then R else R

guardedS(p)

= guardedR1) A guardedR2)
=guardedR1) A guardedR2)
= false

4. 1/0 NEXT Consistency

Consistency betweenguardedcontroller and the annotated B machine is broken down into
initial (definition 4.1) and step-consistency (definitio2

Definition 4.1 (Initial-Consistency of M with respect to M_CTRL) The initial-consistency
of the controller fragment R is defined as follows:

1. Oyaly?’z— R

is initially-consistent with M if ac next(INITIALISATION) and
R is step-consistent with M

2. RIOR2

is initially-consistent with M if R and R are initially-consistent with M.

3. S(p)

is initially-consistent with M

A family of recursive definitions S R is initially-consistent with M’s annotations if each
R is initially-consistent with M’s annotations.

[We define nexd) as the set of operations in the annotation of a.

A controller that starts with an interleaving or a condiaboontrol fragment is not initially-
consistent and should be avoided. An initialisation canhae an output which rules out
the use of anf — then— elseannotation on the initialisation. Ruling out ti@erleaving
annotation simplifies initial-consistency checking.

Definition 4.2 (Step-Consistency of M with respect to MCTRL) The step-consistency of
the controller fragment R is defined as follows:

1.

Oyaly?z— R

is step-consistent with M ¥fb e b € init(R) = b € nex{a), and R is step-consistent with
M.

.RIOR2

is step-consistent with M iflRand R are step-consistent with M.

. (Oyalya?z, — skip ||| Oyblyy?z, — skip);R

is step-consistent with M ife e e € init(R) = e € next{a) and ec nextb), and R is
step-consistent with M, and updéaéy,?z,) N updatébly,?z,) = {}.

. Oye —ifythenR else R

is step-consistent with M ifg BOOL and R and R are step-consistent with M and
vV b € init (Rl) = b € condition_true(e) and
vV ¢ € init (R2) = c € condition falsge)

where conditiontrue returns the actions that are enabled when yrue and conditionfalse
returns the actions that are enabled wheg-yalse.

. S(p)

is step-consistent with M

A family of recursive definitions S R is step-consistent with M’s annotations if each R
is step-consistent with M’s annotations.

The interleaving operator can only be shown to be consisteatvery limited sense. Two
actions are allowed to occur in parallel provided they doattempt to change the variables
used by the other action.

Definition 4.3 (Consistency)A controller R isconsistentvith the annotations of machine M
if it is step-consistent with M’s annotations and initiattpnsistent with M’s annotations.

The main result of this section is thatRis consistent with the annotations of a machine
M, and the annotations &fl are consistent with machinid, then operations d1 called in
accordance with the control flow & will never be called outside their preconditions. We
have [9] proven a theorem that shows that this holds for tseEb&X T, and theNEXT_COND
annotations. The annotations are lose enough to permiiga et of possible consistent
controllers. As such the controller is viewed as a a traceegefent of the annotations. The
controllers do not refine the annotations in a failures djgace sense. We believe, but have
not yet proven, that theEXT_PAR andNEXT_SEQcan be rewritten in the basieXT form.

The key feature of the proof of this main result is an arguntiesit no trace oR leads to an
operation oM called outside its precondition or guard. This is estaklishy building up the
traces ofR and showing that at each step an operation called outsigesit®ndition cannot
be introduced, by appealing to the relevant annotation pptyeng its proof obligation.

The benefit of this main result is that the details of the ojp@na of M are required only for
checking the consistency of the annotations, and are natigered directly in conjunction
with the controller. The annotations are then checked agéme controller using the defini-
tion of consistency above. This enables a separation ofecosctreating the annotations as
an abstraction of the B machine.

5. Refinement and Translation to Handel-C

Refining should be considered where an otherwise cumbers@msiation would result.
Narrowing down the choice of the next operation reduces ittee & the implementation,
and avoids the translation process making an arbitrarycehtw resolve the choice in the
annotations. The first set of refinements, given in the tabfggure 3 replace annotated sets
with their subsets: non-determinism is reduced. The ojerdike OP;, quoted in the table
are all sets.

NEXT external choice refinement reduces the non-determinisrhearchoices that are of-
fered in the next step. TheeXT interleave refinement reduces the non-determinism in one
or more branches of the interleave execution. NE&T sequential refinement reduces the
non-determinism in one or more sections of the sequenceNER& conditional refinement
reduces choice in a similar way.

The second refinement table given in figure 4 outlines sonwidigic refinements. In case

1 a new set of operations are introduc2#;. New operations can be introduced into Event-B
in subsequent refinements. In traditionahBw operations must be introduced beforehand
as operators that implement skip. Case 1 refines a sing@ operation into a sequence
of detailed operations. The refinement sequence must erfteiriginal next operation,
which signifies the end of the refinement chain. In case 2 aseEienc@EXT_SEQto next
interleave refinememMEXT_PAR is depicted. It is possible if the operations that would make
up the sequence are independent: they neither read nortvgimilar variables.

A translations guide for annotations is given in the thedaiblfigure 5 and figure 6. This is a
guide because without the knowledge of the control strectamparticular the points of recur-
sion, a translation can not be automated. However, the atioo$ do differentiate between
internal and external B operations, which has an impacteffirial structure of the code. The
CSP controller is required to get a full picture for translatand the table in figure 16 and

| | Annotation | Refinement | type |
1| OP, = ...0P; NEXT OP = ...OPS NEXT next
external
choice
refinement

2| OP, = ...0P; OPx« NEXT_PAR | OP,

D

...OP, OP, NEXT_PAR | next

interleave
refinement
OP, = ...0Px NEXT OP, = ...0OPx NEXT
OF’Jn = ...OPx NEXT OF’Jn = ...OPx NEXT
OPy; = ...OPx NEXT OPy;, = ...OPx NEXT
6I5kn = ...OPx NEXT 6I5kn = ...OPx NEXT

3| OP, = ...OP;0P- NEXT_SEQ | OP, = ...OP;OP,NEXT_SEQ | next
sequential

refinement
OPR;, = ...OP, NEXT OPR;, = ...0OP, NEXT

OP;, = ...OP» NEXT OP;, = ...OP» NEXT

4| OP, = ...OP;0P> NEXT_COND | OP, = ...OP;OP,NEX_COND | next
condition
refinement
OPR;, = ...OP, NEXT OPR;, = ...0OP, NEXT

OPR,, = ...0P> NEXT OPR,, = ...0Pp NEXT

where OB C OP; and
OP, C OP«

Figure 3. NEXT Refinements - Reduction of Non-determinism.

to some extent the table in figure 1 illustrates how trarmtedif the control can proceed. As
mentioned, the translation of a particular annotated apersdependent on whether the op-
eration is an internal or external operation. Internal apens can execute immediately after
invocation. The execution of an external operation must feaiexternal stimulus: a change
in the command input bus. A wait loop is introduced to poll #pgropriate input bus until
an external operation invocation is detecte@it_on_.... Some annotated operators have
restrictions on their I/O mode. External operators are e@ukith / x extx /. TheNEXT_PAR
can only be associated with internal operations next. N#veT _SEQ must have an external
operator at the head of the sequence and internal operé&bitowing. This restriction relates
to the way this annotation is used in refinement. The CSP altgrtidoes not differentiate
between internal and external operations. Hence the tabfegires 5, figure 6, 15, 16, and

| | Annotation | Refinement | type |
1| OPR = .. 0P NEXT OP, = ...OP; OPx NEXT_SEQ| introduction
of
OP, = ..OPx NEXT new
operation

OP_ = ..OPx NEXT

In

2 | OP, = ...0P; OP, NEXT_SEQ | OP, = ...OP;OP-NEXT_PAR | next

sequence
OP,, = ...0P> NEXT OP,, = ...0P> NEXT to
interleave
e e refinement
OP, = ..OPs NEXT OP, = ..OP» NEXT
variable_used{OP,, ..., OP})
N
variable_used{Op,, ..., OP,})
={}

Figure 4. NEXT Refinements - Structural Refinements.

1 are all required to obtain a translation.

In the table in figure 5 and figure BEXT a annotation with one next operation translates
to a sequence of two operations. If the second operation istamal operation then it is
case 1: all its inputs are not ported. If the second operasam external operation (all
inputs are ported) then case 2 is the translation templatecéntroller will wait until a new
command arrives then execute the external operation if stneguested. Case 3, sequential
arrangement of external operations, is restricted to eateperations only. A translation of
a sequence that starts with one operation then has a chaeeafal external operations will
test each input set and execute the first operation for wiiehrtput has change since its
last execution. (The new input values must be latched iteylkave action is only permitted
between internal operations (case 4): those that takeithmit from internal variables. The
Handel-Cpar statement ensures that all the branches when complete midithe longest
(in terms of clock cycles) has completed. The conditiona@rafor can be used for internal
or external action. In the table in figure 6 case 5 is the tedimsl of theNEXT_SEQ In
the previous section theeXT_SEQ was introduced to support refinement: a bagkxT is
refined into a sequence of operati;dsXT_SEQ To refine an operation that both inputs and
outputs, a sequence of operations must input at the begimfithe sequence and output at
the end of the sequence. Case 5 reflects this requiremeffitstiegperation in the sequence is
an external operation that inputs and the final operation ist@rnal operation that outputs.

The translations of Stepney [16], and Phillips and Stilld®] [are given in table 1. Only
the translation of parametrisable integer declarationctions, and recursion are used. This
is because our source is not CSP (it is annotated B and CSkhsbkannels are not be-
ing used to synchronise events. In the table the CSP langiaggtruct and translation are
mapped. A tick is inserted if they are supported by Stepn&) (B Phillips and Stilles (PS).
When an operation is invoked it takes its input from the emwinent from the port. Internal
synchronisation of operations within machines is not dedh in this paper. To guide the B
translation the table in figure 15 has been developed. A g&son of the example is given in

| | Annotation | Handel-C Translation FragmehtComment |

1| OP, = ..{OP, }NEXT yi = OP (V) ; ¥j, = OPR,(v;,) | internal
single next
oplyi?z — (om,'y;, 7z, — ... translation
2 | OP = ..{OP }NEXT yi = OPR, (Vi) ; external
/ *extx /OP,, = ... wait_on OP;, ; single next
oplyi?z — (op,'yi, 7z, — - .. if in = OR,, translation
theny, = OR, (v,)}
else delay
3| /xextx /JOP = ... yi = OR,(z) ; external
{OP,,..., 0P INEXT wait on OP;,_..._OPR,_; multiple
if in = OR,, next
theny, = OP;, (vj,) choice
else. .. translation

oplyi’z — (om,Y;,?z, — ...0O... | if in = OR;

op,.Yi ’g, — ---) else skip
4 | OP, = ...OP, OP¢ NEXT_PAR seqdy, = OP\(v), internal
par{y; = OP;(v)), next
Yk = OPx (W) interleave
OP, = ...OPx NEXT } translation
}

OP = ...OPx NEXT

oplyi’z — (oply?z — ...)||
(op!Vi?z — .. .)

Figure 5. NEXT Annotation Translation Guide Part 1.

section 6.

6. Example: Safe Control System

We use the example of a safe locking system to illustrateddsad introduced in the previous
sections. The abstract specification outlines the op&mtibthe environment. The operations
that are invoked by the environment are indicated with ext« / annotations. Both the
operation output and the operation can be marked yvitext« / annotations. All/ x extsx /
annotation outputs are ported and become part of the Hahdekrface output. Al) xextx /
operations are associated with a bus port that has a stdte ehtme name as the operation.
Variables intended as input are marked withIN « /. It is possible to mark the variables as

| | Annotation | Handel-C Translation FragmehtComment |
OP, = ...OP; OPx NEXT_SEQ | yi = OPRi(v;), wait_on_OP; next
sequential
if in = OR,, translation
/ * extx /OP,, = ..OPx NEXT | theny, = OP;,(v,)
else. ..
/ * extx /OP, = ..OPx NEXT
if in = OPR;_
OP, = ... theny = OB, (v;,)
else skip
OPkn = ..)
Yii = OPiq (Vip)
oplyi’z — (om,l;,?’z, — ...O
.0
oB,Yi %, — ---);
(0P Yi, 72y — ... O
...g
OpKn!ykn?an - ..)
/ xextx /OP = ... y = OPRi(v), external
OP; OPc NEXT_COND |ify next
{wait_on_OP; ; condition
if in = OR,, translation
theny, = OB, (v;,)
else. ..
OP,, = ...OP« NEXT
if in = OPR;_
else skip
OP, = ..OP¢ NEXT }
else
OP, = ...OP¢x NEXT {wait,
if in = OP
then ¥, = OPy (Vin)
else. ..
OPy, = ...OP« NEXT
if in = OPy,
then y,, = OPkn(an)
else skip
ki

oplyi’z — (om,l;,?’z, — ...O
O

(0P i 720 — - -
O

OpKn!ykn?an - ..)

Figure 6. NEXT Annotation Translation Guide Part 2.

Table 1. Existing CSP to Handel-C Translation Guide.

Feature CSPM Handel-C PS SS
Channel Declarations channel chan, chanin, chanout v/
(from use)

Channel Declarations channel c chan SYNC c; v
Typed Structured channeld: T.T chan strucDATA d v
Channel Declarations

Input Channel Operations in?x in?x; v oV
Output Channel Operations out!x out!x; v Y
Integer Declarations int 8 x; v oV
Parametrisable functions p(n)=... void(n)... v v
External Choice [prialt ... v v
Synchronous Parallel ({13 1] par ... v v
Replicated Sharing Parallel [| Event| | n: {i..j }eP(n) par (n=i; nj=j; ++n)P(n); v
Recursion P=.—-P while(1) ... v v
Conditional Choice if b then P else Q if (B) then P(); else Q(); v
Macros {-...-} v

/*IN=*/or /+OUT=x /. Along with the mode the width of the type is given in bits. @g®ns
are invoked in two ways. The first way has already been intteduan/ x extx / operation
will have a input bus associated with it, which when set todperator name will invoke the
operation when it is enabled by the control flow. Operatiooislabelled with/ * extx / are
internal and are invoked immediately when enabled by thérabfhow.

6.1. The Example’s State and Control Flow

In figure 7 the B Abstract Machine for the safe is given. Theeetaree command states
Locked Unlocked andBrokenOperwhich are represented in two bits. The variabDleor is
drawn from theCOMMANDtype and initialised tdnlocked TheLockoperation is enabled
after initialisation. It is an external operation with extally ported output. After setting the
Door state variable th.ocked UnlockedandBreakOperare enabled. For completeness we
introduce two operations that will be used later to develmpdetailed functionality of the
machine during refinement. These operationsd.amckRl andUnlockR2. Their bodies are
not expanded. Th&lnlockis an external operation and has externally ported outpaobri-
deterministically decides to set tior variable toUnlockedor Locked The next operator
to be enabled depends on the outcome otthickoperation. IfUnlockedwas chosen then
the next enabled operationli®ck otherwiseUnlockedor BreakOperwill be offered. The
BreakOperoperation sets thBoor state tadBrokenOperand offers itself as the next operation
available.

The controllerCTRL given in figure 8 first performs #nitialisation then aLock and then
jumps to theS process where it can perform either dnlock or BreakOpen The Unlock
event has a single output that is used as the conditionahtés¢ if-then-else following the
Unlockevent. If the output of theJnlockoperation is true then the flow of control is repeated
starting again aCTRL, if it is false then control is repeated &t

MACHINE Safe
SETS COMMAND= { Locked, Unlocked, BrokenOper}/*2*/
VARIABLES Door
INVARIANT Door € COMMAND /*OUT2*/
INITIALISATION Door :=Unlocked /*{ Lock } NEXT */
OPERATIONS

[*ext*/ Status«—— /*ext*/ Lock =

PRE Door = UnlockedTHEN Door := Locked|| Status= LockedEND
* { Unlock, BreakOper} NEXT */ ;

UnlockR1 (Combla,Comblb) =

PRE Comblac NAT A Comblbe NAT THEN skip;
UnlockR2(Comb2a,Comb2b) =

PRE Comb2ac NAT A Comb2be NAT THEN skip;
[*ext*/ Status«<— [*ext*/ Unlock =
PRE Door = Locked

THEN
ANY ddwHERE dd: COMMAND - { BrokenOpen}
THEN
IF (Unlocked =dg THEN Status=1ELSE Status=0END ||
Door :=dd
END

END /* { Lock } { UnLock,BreakOper} NEXT_COND */;
[*ext*/ Alarm «—— [*ext*/ BreakOpen =

PRE Door € COMMAND THEN Door := BrokenOperj| Alarm:= 1 END
* { BreakOpen} NEXT */ ;
END

Figure 7. Safe Machine

6.2. A Refined Example

A refinement of th&Safemachine, called SafeR, is given in figure 9 and figure 10 . Within

a B framework, mimicking refinement in Event-B. The openatimlockRl andUnlockRI are
introduced to refiné&nlock The laws of refinement of Event-B are not fully justified. Tkee
fined SafeREFINEMENT, SafeR breaks down the Unlocking process into two stages. Fjrstly
a two new operation are slotted into the control in parall#iiockR (Comia, Comib)
and UnlockR(Coml2a, Comt2b). Both have a combination parameter which is compared
against a stored master code and a secondly parameterulatliso create a new master key.
The UnlockRcommands update the master combination if a sucessful asopabccurs.
New input variables are adde@xla, Cx2a, Cxlb, andCx2b. These are used to input the
combination values and are not used by the B Operat©nscked, Checked, Master and
Master are new variables used by the operations. The annotatidhe bbck operation are

CTRL= Initialisation — 51 Locky — S

S= (9 UnlocKy — (if y then 9 Locky — CTRL else §0
(g BreakOpety — B_CTRL
B_CTRL= 51 BreakOpelty — B_CTRL

Figure 8. Safe Machine Controller.

refined. Two operation are added before thdock The extra proof obligations can be dis-
charged. The bodies of ttnlockRandRekeyComl2) are completed at this level. The body
of theUnlock operation is refined. The annotations of thelockare refined: th@8reakOpen
operation is removed as an option. What was one unlock aperaas been expanded into
three (two inparallel). Before refinement thalock operation has both input and output.
The refined version has the input occuring on the first opmratin the refined sequence of
operations UnlockRl andUnlockR2), and the output occuring on the final operation of the
sequence (the origin&lnlock operation).

The controller given in figure 11 starts off like the abstraobcess with arnitialisation

and alLockthen a jump tdS. There is in this refined process no choicébteakOpenonly
UnlockRland UnlockR2 are offered withCxla and Cxlb and Cx2a and Cx2b are offered

as an input,respectively. THgnlockR process is the first in a sequence of processes that
refines the originaUnLockprocess. The refined sequence starts with a parallel cotidnna

of UnlockRl andUnlockR2 events then the origindnlock event, at which point the output

is given. As before the outcome Bhlockdetermines what happens next. If tdelockwas
successful the process will be restarted from the beginfiinige current attempt at locking
failed then another go &inlock will occur. It is noted that thé.ock — Scould have been
replaced byCTRL However, the former is easier to translate.

6.3. A Hand Translation using the Guidance

A summary of the hand translations on the refined B specifinas given in the table in
figure 15. The B provides the details of the types, varialaled functions. The CSP controller
provides the executions details that are use later to amtdtie Handle-C main section. A
summary of the hand translation of the controller is givethmtable in figure 16

First we review the B translation. THRETSclause is translated into an enumerated type.
TheINVARIANTSsection is used to create the declarations. Variables atetbwith a mode
will be created as buses of the appropriate 1/0O type and €ifger variables will be cre-
ated. Variables which will be bound to ports are created hEgeration which is external
is associated with a command input bus of the same name asaittama. The mechanism
for requesting an external operation to execute is to ch#mgeata on the command input
bus to the same name as the operation required. The lasssteduaperation is latched into
variable of the same name as the refined machine witlvar post fix. Variables are de-
clared for operation outputs. The names of the output buahlas are a concatenation of the
operation output name and the operation name. This avaadhies with similar operation
output names. Buses are defined for eachiN « / and/ * OUT * / annotation, external
operation, and operation output. Each operation is tréetsiato a function. If an operation
has an output the function will return a value. Functionswatitputs will have an assign-

REFINEMENT SafeR
REFINES Safe

VARIABLES Door, Cxla Cx23 Cxlh Cx2h
Master]l, Checkedl Master2 Checked?2

INVARIANT
Cxlac NAT/*IN16*/ A Cx2ac NAT/*IN16*/ A
Cxlbe NAT/*IN16*/ A Cx2be NAT/*IN16*/ A
Masterle NAT/*16*/ A CheckedXk NAT/*1*/ A
Master2e NAT/*16*/ N Checked2= NAT/*1*/

INITIALISATION
Door:=unlocked|| Cx1a=0 || Cx2a=0 || Cx1b=0 || Cx2h=0 ||
Masterl=67 || Checkedt0 Master2=76| Checked20 /* { Lock } NEXT */

OPERATIONS

[*ext2*/ Status «—— /[*extl*/ Lock =
PRE
Door = Unlocked
THEN
Door := Locked|| Status= Locked|| Checked1=0 | Checked2=0
END
I* { UnlockR1(Cx1a,Cx1b), UnlockR1(Cx2a,Cx2p) Unlock } NEXT_SEQ */
I* { UnlockR1(Cx1a,Cx1b} { UnlockR1(Cx2a,Cx2b} NEXT_PAR */;
[*ext1*/UnlockR1(/*16*/Combla,/*16*/Comblb) =
PRE
Door = Locked
THEN
IF
(Combla = Masterl)
THEN
Checkedl=1| Masterl:= Comblb
ELSE
Checked1=0
END
END /* { Unlock } NEXT */ ;

Figure 9. Safe Refinement Part 1.

ment in them that assigns to the bus output function varidiile function will also return
that output in the final statement of the function. Assigrnimghe function output variable
and writing it to a output port as well allows it to be put out the output bus, and used
internally in the Handel-C program. The bodies are traedia a straightforward manner.
Assignments in the operations are put togetherparsHandel-C statement. Assignment and

b

[*ext1*/UnlockR2(/*16*/Comb2a,/*16*/Comb2b)
PRE
Door = Locked
THEN
IF
(Comb2a = Master2)
THEN
Checked2=1| Master2:= Comb2b
ELSE
Checked2=0
END
END /* { Unlock } NEXT */ ;
[*ext2*/Status«<—— Unlock =

PRE
Door = Locked
THEN
Status= Checked||
IF
(Checkedl = LA (Checked2 =)
THEN
Door := Unlocked
ELSE
Door := Locked
END

END /* { Lock } { UnlockR } COND_NEXT */ ;
[*ext*/ Alarm «—— [*ext*/ BreakOpen =

PRE Door € COMMAND THEN Door := BrokenOperj| Alarm:= 1 END
* { BreakOpen} NEXT */
END

Figure 10. Safe Refinement Part 2

CTRL= Initialisation — 9 Locky — S

S= (UnlockRI7Cxla?Cxlb — skip||| UnlockRl?Cx2a?Cx2b — skip) —
9 UnlocKy — (if y then 9 Locky — Selse

Figure 11. Refined Safe Controller.

theif — then— elseB constructs have straightforward translations. The rdfBi@xample is
limited to assignment anél — then— else TheINITIALISATION:is translated into a function
calledInitialisation_fnc.

The CSP controller is used to construct the main Handel-G.bddummary of the hand

//set clock = external "Clock";
#define PAL_TARGET_CLOCK_RATE 25175000
#include "pal_master.hch" [11171177117717777
// BreakOPen removed in translation as
// not used and no command default added
typedef enum {Not_Commanded =
(unsigned 2) 0, Locked, Unlocked} COMMAND; //
typedef enum {No_Command =
(unsigned 2) 0, Lock, UnlockR1, UnlockR2} SafeR;
unsigned 2 Door; // B variables
unsigned 1 Checkedl; //
unsigned 16 Masterl; //
unsigned 1 Checked2; //
unsigned 16 Master2; //
SafeR SafeR_Bus_var; // latch input bus values to
// request operation execution

unsigned 1 Status_Unlock; // operation output values

unsigned 2 Status_Lock; //

interface bus_in(unsigned 16 inp) Cxla(); // IN annotations
interface bus_in(unsigned 16 inp) Cx2a(); //

interface bus_in(unsigned 16 inp) Cx1b(); // IN annotations
interface bus_in(unsigned 16 inp) Cx2b(); //

interface bus_in(SafeR 2 inp) SafeR_BusQ); // ext operations

interface bus_out() Doorl (unsigned 2 OutPort=Door); // OUT an.
interface bus_out()
Status_Unlockl (unsigned 1 OutPort=Status_Unlock); //

Figure 12. SafeR Translation Part 1a.

translations made on the CSP controller are given in the tabfigure 16. The controller
design was structurally limited to facilitate translatiomtialisation and setting up operations
are performed before a main loop is entered. The first prodefsition CTRL fnc is not
recursive; it is an open process. It translates to a fun@aCTRL fnc, which invokes the
Initalisation_fnc andlock_fnc functions. On returning to the main program the next func-
tion called is theS fnc, which implements the main loofa_fnc is tail recursive and is im-
plemented with a continuously looping while loop; it is as®#d process. The first event in
the main loop is th&JnlockRcommands. In the translation thnlock fnc is preceded by
wait_Unlock fnc as it is an external operation. ThinlockR fnc functions inputs from the
Cxla, Cxlb, Cx2,andCx2 input buses. Thé&Jnlock fnc call follows. Unlock_fnc returns a
value that is assigned to a variable that is output ported.vHfue is also used to decide the
course of the following if-then-else. Eithelack fnc or anUnlockR fncis performed after
a wait. Then the process recurses.

7. Discussion

This paper has introduced a way of refining annotations thapart Event-B style refine-
ment, and set out a guide for translation to an HDL, withinBhennotation framework. We
have demonstrated how the framework previously preserdaadoe extended for both tra-
ditional B and Event-B. Our approach sits naturally withmefnent. Refinement and trans-
lation are still being considered for CHP. In fact the B annotation approach offerers sev-

void wait_on_Lock_fnc ()
while (SafeR_Bus.inp != Lock){delay;}
SafeR_Bus_var = Lock;

}
unsigned 2 Lock_fnc(void){
par{
Door = Locked;
Status_Lock = Locked;
}
return Locked;
}

void wait_on_UnlockR1_fnc(void){
while (UnlockR1l.inp != UnlockR1){delay;}
SafeR_Bus_var = UnlockR1i;
}
void UnlockR1_fnc(unsigned 16 Combla; unsigned 16 Comblb;){
if (Combla == Masterl) {
par{Checkedl = 1, Masterl = Comblb};
}
else
{Checkedl = 0;}
}
void wait_on_UnlockR2_fnc(void){
while (UnlockR2.inp != UnlockR2){delay;}
SafeR_Bus_var = UnlockR2;
}
void UnlockR2_fnc(unsigned 16 Comb2a; unsigned 16 Comb2b;){
if (Comb2a == Master2) {

par{
Checked2 = 1,
Master2 = Comb2b};
+
else

{Checked2 = 0;}

Figure 13. SafeR Translation Part 1b.

eral approaches to refinement: refinement of control flow,asthte only, or control flow

and state. The extensions to the annotations are fairlyamchnow include annotations to
support: next selection, sequencing, conditional, parakecution, and 1/0O. The inability to
define points of recursion has led to a reliance on a CSP dtantye restricted this paper to
the consideration of fixed variables as operation inputs pEmmitted no scope for controller
state. Work on CSP state and defining recursive points inrthetations is currently ongo-
ing. More work is required to automate the translation anckhig the proof of the theorem
to cover interleaving.

Acknowledgements

The extensions to the refinement have benefited from cortiersavith Stefan Hallestede
and Helen Treharne. Thankyou for the encouraging commeons the refers and detaled

lists of erroreta, improvments and additions.

References

[1] J-R. Abrial. The B-Book: Assigning Programs to Meanir@@ambridge University Press, 1996.

[2] J-R. Abrial. Event driven circuit construction versiBn MATISSE project, August 2001.

[3] J-R. Abrial and L. MussatEvent B Reference ManudaClearSy, 1999.

[4] A. Aljer and P. Devienne. Co-design and refinement foesaéritical systems. 149th IEEE International
Symposium on Defect and Fault Tolerance in VSLI Systems'(@); pages 78-86, 2004.

[5] P. T. AshendenThe Designer’s Guide to VHDLMorgan Kaufmann, 1996.

[6] C. Fischer. CSP-OZ: A combination of Object-Z and CSP.

[7] C. A. Hoare. Communicating Sequential Process&sentice-Hall International, Englewood Cliffs, New
Jersey, 1985.

[8] W. Ifill. Formal development of an example processor (AEPAMN, C and VHDL. Computer science,
University of London, Computer Science Department, Royallddvay, University of London, Egham,
Surrey TW20 OEX, Sept 1999.

[9] W. Ifill, S. Schneider, and H. Treharne. Augmenting B wibantrol annotations. In J. Julliand and
O. Kouchnarenko, editor&2007:Formal Specification and Development invBlume 4355 ofLNCS
Springer, January 2007.

[10] W. Ifill, I. Sorensen, and S. Schneidétigh Integrity Softwarechapter The Use of B to Specify, Design
and Verify Hardware. Kluwer Academic Publishers, 2001.

[11] Alexandre Mota and Augusto Sampaio. Model-checkind?€ZS Strategy, tool support and industrial
application.Science of Computer Programmintf(1):59-96, May 2001.

[12] J. D. Phillips and G. S. Stilles. An automatic translatof CSP to Handel-C. In|. East, J. Martin, P. Welch,
D. Duce, and M. Green, editorommunicating Process Architecures 20[3S Press, 2004, 2004.

[13] A. W. Roscoe.The Theory and Practice of Concurrend3rentice-Hall, 1998.

[14] S. SchneiderConcurrent and Real-time Systems: The CSP Approdain Wiley and Sons, 1999.

[15] S. SchneiderThe B-Method: An introductiorPalgrave, 2002.

[16] S. Stepney. CSP/FDR2 to Handel-C translation. Te@iméport, University of York, June 2003.

[17] H. Treharne.Combining Control Executives and Software Specificatid?tsD thesis, Royal Holloway,
University of London, 2000.

[18] H. Treharne and S. Schneider. Communication B machimesB2002 2002.

unsigned 1 Unlock_fnc(void){
par{
if (Checked == 1) {Door = Unlocked;} else {Door = Locked;}
Status_Unlock = Checked;
}
return Checked;
}
void Initialisation_fnc(void){
Checked = 0O;Master = 67;Door
Status_Lock = 0;Status_Unlock

Unlocked; // INITIALISATION
0; // SET QUTPUT DEFAULT

+
void CTRL_fnc(void){
Initialisation_fnc; wait_on_Lock_fnc();
if (SafeR_Bus_var == Lock){Lock_fnc();}else{delay;}
}
void S_fnc(void){
while(1){par{
seq{wait_on_UnlockR1_fnc();
if (SafeR_Bus_var==UnlockR1){
UnlockR1_fnc(Cxla.inp,Cx1b.inp)}
else
{delay;?}
} // seq
seq{wait_on_UnlockR2_fnc();
if (SafeR_Bus_var==UnlockR2){
UnlockR_2fnc(Cx2a.inp,Cx2b. inp)
+
else
{delay;?}
} // seq
} // par
Status_Unlock = Unlock_fnc();
if (Status_Unlock){
wait_on_Lock_fnc();
if (SafeR_Bus_var==Lock){
Lock_fnc();
+
else
{delay;?
}
else
{delay;?
+
} //while
+
void main(void)Aq
CTRL_fnc;S_fnc;
}

Figure 14. SafeR Translation Part 2.

| Feature | B | Handel-C
set SETS SS= typedef enum{ AA =
AA,.... XXI*n*/ (unsigned n) O, ..., XX SS;
declaration
B variable INVARIANT unsigned n Vv;
declaration | Vv € TT /*OUTn*/ interface busout()
Vv1 (unsigned 2 OutPort=Vv);
INVARIANT unsigned n Vv;
Vv € TT /*INn*/ interface busin(unsigned n inp) Vv();
INVARIANT unsigned n Vv;
Vv € TT /*n*/
Function [*extN*/ Oo0 unsigned 1 Ccvar,
Declaration | < /*ext*/ Cc(/* M */Zz) | interface busout ()
0Oo0_Cc1 (unsigned N OoCc);
interface busin(unsigned 1 inp) Cc ()
void wait_on_Cc_fnc()
{ while (Cc.inp == Ccvar) { delay;}
Cc_var = Cc.inp;
unsigned N Ccfnc(unsigned M ZZ)
par...;};return exp;
Function PREP THEN B END paf{<< B >>}
Body
IFbTHENCELSEdEND | if <>{<<c>>}
else{ <<d>>};
b:=c <>=<<cCc>>;
initialisation | INITIALISATION ... void Initialisation(voidy .. .; }
main OPERATION void main(void) Initialisation;.. . }
Figure 15. B to Handel-C Translation Guide.
| Feature | CSP | Handel-C
initialisation P=...R P_fnc();Q_fnc();
processes void P_fnc(void){. . .;}
main loop R=...R R_fnc();
processes void R_fnc(void){while(1X. . .;}}
prefix (internal) | <e— P> e_fnc; <P>
prefix (external) | < e— P> wait_on_e; e fnc ; <P>
choice (external) < P10 P2> <P1>
interleaved < el — skip PAR{< e, — skip>;
-l ..; <e,— skip>}; <P>
e, — skip P >
if-then-else <ifythenPelse @ |ify {<P>} else{<Q>}
where< P >
is the translation of P

Figure 16. CSP to Handel-C Translation Guide.

