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Abstract

A number of key establishment protocols claim the prop-
erty of forward secrecy, where the compromise of a long-
term key does not result in the compromise of previously
computed session-keys. We describe how such protocols can
be modelled using the process algebra CSP and explain
why the well-known rank function approach is incapable
of proving their correctness. This shortcoming motivates us
to propose a generalised proof technique based on the novel
concept of a temporal rank function. We apply this approach
to two examples: a protocol due to Boyd and the Cliques (A-
GDH.2) group key agreement protocol.

1. Introduction

A number of cryptographic protocols have appeared in
the literature that claim to provide forward secrecy. The
idea of forward secrecy is that if a long-term key is com-
promised then any session-keys that were previously es-
tablished using the long-term key should remain secret.
Forward secrecy is important in scenarios where session-
keys need protection beyond the time-span during which
they are used. These situations typically arise when session-
keys are used for data encryption, rather than just au-
thentication. There appears to be a disparity between the
growing number of protocols that claim forward secrecy
[2, 7, 17, 16, 1, 18, 15] and the work carried out on its for-
mal analysis. In contrast to secrecy and authentication, the
formal verification of forward secrecy has, with some ex-
ceptions [20, 4], received little attention in the literature.
This paper fills the gap for the rank function approach.

This paper demonstrates how the notion of a rank func-
tion can be generalised to permit the verification of for-
ward secrecy. The rank function approach [23] has pre-
viously been used to reason about authentication, secrecy
and non-repudiation in a number of cryptographic proto-
cols [23, 25, 9, 5]. In the standard approach, a rank func-
tion is used to partition the message-space of a protocol
such that all messages which should remain secret are as-

signed a rank of sec and all messages that might be public
are assigned a rank of pub. Typically, the protocol is mod-
elled using the process algebra Communicating Sequential
Processes (CSP) [22, 24]. The central rank theorem gives a
series of healthiness conditions that the function must sat-
isfy in order for us to conclude that the protocol does actu-
ally maintain the secrecy of a given set of messages. Stated
another way, the rank theorem gives the conditions under
which it is reasonable to conclude that the sets of public
and secret messages are disjoint.

It turns out that this all-or-nothing view of secrecy is un-
able to capture properties of protocol models which include
compromised keys. Since compromised keys become pub-
lic after some initial period of secrecy they can neither be
classified as entirely secret nor entirely public, and the stan-
dard approach cannot model values that inhabit this middle-
ground. Since forward secrecy is dependent on the con-
cept of compromised keys, protocols which provide forward
secrecy are unverifiable using the standard approach. Al-
though this incompleteness motivates the richer concept of
a temporal rank that we propose here, a discussion of the
shortcoming is somewhat incidental to the main thrust of
the paper. For this reason we delay it until Section 5. Our
goal is not to introduce yet-another-verification-technique
but to show how an existing technique can be generalised
to permit reasoning about a wider class of security proper-
ties.

In the next section we describe how compromised keys
can be modelled using CSP and show how forward secrecy
can be formalised as a trace specification over such a proto-
col model. In Section 3 we introduce the idea of a temporal
rank function and establish a central theorem that gives con-
ditions under which we can conclude that a protocol guar-
antees forward secrecy. We demonstrate this approach on
the running example of a protocol due to Colin Boyd and
in Section 4 consider a further example: the Cliques (A-
GDH.2) group key agreement protocol. As mentioned, Sec-
tion 5 discusses why the original rank function approach
fails in the presence of compromised keys, and Section 6
concludes. Some knowledge of CSP is assumed but we pro-
vide a summary of relevant notation in Appendix A.



2. Formalising forward secrecy

The concept of forward secrecy was first introduced by
Günther [10] who used the term perfect forward secrecy.
We follow the lead of other authors [14, 3] in dropping the
word perfect and avoiding confusion with the unrelated con-
cept of perfect secrecy.

Forward secrecy is captured by the following definition:

Definition 1 A key establishment protocol provides for-
ward secrecy if compromise of the long-term keys of a set
of principals does not compromise the session-keys estab-
lished in previous protocol runs involving those principals.

As a running example we use a protocol due to Boyd [3] that
takes its cue from an earlier idea by Wiener [26]. The pro-
tocol allows a session-key k to be established between two
principals, a and b. a generates a fresh asymmetric key-pair
(pk, sk) and sends the public half to b along with a fresh
nonce, na, and the signature of pk under a long-term sign-
ing key Sig(a). b uses the public-key to encrypt the session-
key k and sends it to a along with a signature containing a
hash of the session-key:

1. a → b : pk · na · {pk · b}Sig(a)

2. b → a : {k}pk · {h(k) · a · na}Sig(b)

(we write m1 ·m2 for the pairing of messages m1 and m2

and use {m}k to denote the encryption of m under a key k).
This protocol aims to meet the forward secrecy property of
Definition 1 if a and b are honest and the long-term signing
keys Sig(a) and Sig(b) are not compromised until after the
protocol has ended. This can be argued informally in the fol-
lowing way. The keys Sig(a) and Sig(b) are used only to au-
thenticate the session-key, and although their disclosure al-
lows an attacker to masquerade as a or b in future protocol
runs, it does not allow him to recover the past session-key.
The session-key can only be recovered with the private-key,
sk, which is freshly generated for each protocol run. Asym-
metric key-pairs, such as (pk, sk), which are discarded after
a single protocol run are termed ephemeral keys, and it is
the use of ephemeral keys that enables the protocol to pro-
vide forward secrecy.

Boyd and Mathuria [3] call the property in Definition 1
full forward secrecy in distinction to the weaker property of
partial forward secrecy:

Definition 2 A protocol provides partial forward secrecy if
compromise of the long-term keys of one or more specific
principals does not compromise the session keys established
in previous protocol runs involving those principals.

The difference between full and partial forward secrecy cen-
tres around the number of long-term keys that are compro-
mised. For example, a protocol involving two honest par-
ties, A and B, will provide full forward secrecy if a past

session-key remains secure when both A’s and B’s long-
term keys are compromised. If this property is not met, how-
ever, the protocol may still provide partial forward secrecy
if the compromise of just one long-term key (either A’s or
B’s, but not both) prevents the intruder from discovering a
past session-key. Full forward secrecy takes a pessimistic
view by assuming the disclosure of all long-term keys, and
for the purpose of protocol verification it will often be pru-
dent to apply this stronger condition. For protocol analy-
sis1, however, it is often useful to consider partial forward
secrecy since, if the protocol does not meet the weaker goal,
it will certainly not satisfy the stronger condition. For sim-
plicity, the present work concentrates on the notion of par-
tial secrecy, although this is by no means a limitation of
our approach. In particular, we will show that Boyd’s proto-
col achieves partial forward secrecy with respect to the key
Sig(A) for some (honest) initiator A.

Pereira makes an interesting distinction between what he
terms complete forward secrecy and individual forward se-
crecy [19]. In complete forward secrecy it is assumed that
the past protocol runs were executed without any interfer-
ence by the intruder, who is passive and merely records the
messages that pass on the network. In contrast, individual
forward secrecy assumes an intruder who has potentially
manipulated the messages of one or more principals in pre-
vious runs. The terms ‘complete’ and ‘individual’ are ap-
propriate for Pereira’s focus on principals in group Diffie-
Hellman protocols. Here, however, we will refer to them as
passive and active forward secrecy, respectively, in recog-
nition of the intruder’s role in past protocol runs. When
we talk about forward secrecy in this paper we are refer-
ring specifically to the notion of active forward secrecy.
Clearly, a protocol that provides active forward secrecy also
achieves the weaker goal of passive forward secrecy.

2.1. Compromised keys

We model protocols in CSP where each principal, and
a special intruder process called ENEMY, are represented
by processes. A principal A can transmit a message M to B
by performing the event trans.A.B.M. Conversely, B can re-
ceive this message by performing rec.B.A.M. We assume
a worst-case-scenario where all data communication (any-
thing passed on the channels trans and rec) passes through
the intruder. This arrangement is shown in Figure 2. A side-
effect of this network composition is that ENEMY, unlike
the user processes, ‘hears’ messages on channel trans and
‘says’ messages on channel rec.

1 Our distinction between protocol verification and protocol analysis
lies in the goal of the endeavour: the first aims to prove correctness
whilst the second attempts to discover attacks. In general, failure to
find an attack does not imply correctness.
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Figure 1. Intruder deductions

Forward secrecy becomes relevant in situations where
long-term keys can become compromised. We are not con-
cerned with how the keys are leaked (as a result of crypt-
analysis, for example), but only with the fact that they are.
We develop a process ENEMY that represents an active
Dolev-Yao style intruder [8] with the additional ability to
learn long-term keys that have been leaked.

2.1.1. The intruder process The model of ENEMY is
built around a set S of facts that the intruder knows and a
‘generates’ relation � that the intruder can use to deduce
new facts. We write S � m if the intruder can generate the
message m by knowing all messages in the set S. The ca-
pabilities captured by � are given in Figure 1. The process
ENEMY is parameterised by a set IIK — the Intruder’s Ini-
tial Knowledge — that contains the facts available to the in-
truder at the start of the protocol. This set will typically in-
clude the usernames of all principals, any long-term public-
keys and other keys that the intruder may reasonably know.

The intruder can (i) hear any message on the network
and add that message to his knowledge set, (ii) send to any
principal any message generable under �, and (iii) compro-
mise any key in a set TS of temporary secrets and add it to
his knowledge set:

ENEMY = Enemy(IIK)
Enemy(S) =

trans?a?b?m → Enemy(S ∪ {m})
� � a:U,

b:U,
m|S�m

rec.a.b.m → Enemy(S)

� �
m:TS

leak.m → Enemy(S ∪ {m})
(where U is the set of identities of all principals). The defini-
tion of ENEMY is not entirely general since we can adapt it
to facilitate the compromise of different sets of keys. Doing
so will be dependent on both the protocol under considera-
tion and the precise forward secrecy goal that we intend to
verify. To reason about full forward secrecy in Boyd’s proto-
col, for example, we would define TS = {Sig(a) | a ∈ U}.
Note that the intruder can always signal his knowledge of a

USERA

USERC

USERBtrans.A

rec.A

trans.B

rec.B

USERE

ENEMY

Figure 2. Network arrangement

message M by performing the event trans.E.E.M, where E
is the intruder’s identity.

2.1.2. The principals We model each principal that takes
part in the protocol as a CSP process representing the pro-
tocol steps performed by that principal. For example, con-
sider UserI(a, b, pk, na) from Figure 3. This process models
a principal a running Boyd’s protocol as initiator (denoted
by the superscripted I) with b, where pk is the ephemeral
public-key and na is the nonce used in the run. Similarly,
UserR(b, a, k) is a principal b running as responder, appar-
ently with a, using the session-key k. On receipt of the first
protocol message, b verifies the signature to satisfy himself
that the message originated from a. The responder asserts
his belief that k will be a secret shared only with a by per-
forming the signal event signal.b.a.k.

The network composition is shown in Figure 3. The pro-
cess USERa represents the entire behaviour of a principal a
in both initiator and responder roles. In the initiator case a
session variable pk is chosen from the set PKab of public-
keys that a will use in runs with a particular principal b.
The function nonce is an injective mapping from public-
keys to nonces such that nonce(pk) is the nonce that a will
use in the run involving pk. Similarly, as a responder, the in-
terleaving is indexed by the session-key k ∈ Kba. The sets
PKab and Kab of public- and session-keys are all pairwise
disjoint.

We incorporate the ENEMY and user processes into a
standard CSP protocol model in which an arbitrary num-
ber of principals can engage in arbitrarily many instances of
the protocol concurrently. By convention, the process repre-
senting the entire network is called NET.

2.2. Statement of forward secrecy

A CSP process can be characterised by its traces, where
a trace represents one possible sequence of events that the
process can perform. For a process P, traces(P) is the set
of all possible traces of P. The set traces(P) is always non-
empty since every process can perform the empty trace 〈〉



UserI(a, b, pk, na) =
trans.a.b.(pk · na · {pk · b}Sig(a))
→ rec.a.b?({k}pk · {h(k) · a · na}Sig(a))
→ Stop

UserR(b, a, k) =
rec.b.a?(pk · na.{pk · b}Sig(a))
→ signal.b.a.k
→ trans.b.a.({k}pk · {h(k) · a · na}Sig(a))
→ Stop

USERa =

|||
b:U

(|||
pk:PKab

UserI(a, b, pk, nonce(pk))
)
|||(|||

k∈Kab
UserR(a, b, k)

)
NET =

(|||
a:U

USERa

)
|[ {| trans, rec |} ]|ENEMY

Figure 3. CSP model of Boyd’s protocol

and is prefix-closed since, if s � t is a trace of P, then s is
also a trace of P.

A trace specification is a predicate on traces, and we
write W(tr) if the predicate W holds for a trace tr. A pro-
cess P satisfies W (written P sat W) if all its traces satisfy
W:

P sat W ⇔ ∀ tr ∈ traces(P).W(tr)

We are already in a position to prove that any message
that can be sent by ENEMY must be generable from the set
IIK together with the messages input on channels trans and
leak.

Theorem 1

ENEMY sat
(IIK ∪ (tr ⇓ {trans, leak})) � tr ⇓ rec

Proof (sketch). We prove by a mutual recursion induc-
tion that Enemy(S) sat (S ∪ (tr ⇓ {trans, leak})) � tr ⇓
rec and the result follows from the fact that ENEMY =
Enemy(IIK). �

We introduce two important trace specifications. The
first is the secret predicate which states that no event t ∈ T
occurs in the trace tr:

Definition 3

secret T = tr � T = 〈〉

(where tr � T is the trace tr restricted to events in T). Al-
though T is a set of events, it will be convenient to think of
it as a set of messages that we wish to keep secret, and we
abuse the notation to write (for example) T = {M} where

we should more properly have written T = {trans.a.b.M |
a ∈ U, b ∈ U}.

The second important trace predicate is St precedes
which states that, for disjoint sets R and T, any occurrence
of an event t ∈ T in a trace will be strictly preceded by some
occurrence of an event r ∈ R:

Definition 4

R St precedes T =
tr � T �= 〈〉 ⇒

∃ tr′ < tr.tr′ � R �= 〈〉 ∧ tr′ � T = 〈〉
Consider the process NET from Figure 3. If a trace tr0 ∈
traces(NET) contains the event leak.Sig(A) we know that
the intruder has, at that point, learned the signing-key of
principal A. Similarly, if tr0 contains the event signal.B.A.K
we can conclude that, at that point, B was willing to estab-
lish a key K with a principal who B believed to be A. If
leak.Sig(A) appears in the trace before signal.B.A.K then
the ephemeral key used to encrypt K may have come from
the intruder, who invents a key-pair (PK, SK) and a nonce
NA and uses Sig(A) to masquerade as A:

1. E(A) → B : {PK, B}Sig(A)

2. B → E(A) : {K}PK, {h(K), A, NA}Sig(B)

(where E(A) denotes the intruder masquerading as A). If, on
the other hand, signal.B.A.K occurs before leak.Sig(A) (i.e.,
if the predicate {signal.B.A.K} St precedes {leak.Sig(A)}
holds) then the forward secrecy property tells us that the
compromise of Sig(A) should not result in the compromise
of the (previously established) session-key K. We can there-
fore state the claim secret{K}: the intruder never learns K.

This is the heart of our statement of forward secrecy: that
all session-keys established between honest principals be-
fore the compromise of the long-term key should remain
secret even after the long-term key has been leaked. If k is
a session-key established between two honest principals a
and b and lk is a long-term key used to establish k, we de-
fine the trace specification fs that captures this notion of for-
ward secrecy:

Definition 5

fs(k, lk) =
{signal.b.a.k} St precedes {leak.lk}(tr)
⇒ secret{k}(tr)

For our running example, represented by the process NET,
we can state the specification as:

NET sat fs(K, Sig(A))

That is, if B is willing to establish the session-key K ∈ KBA

with A, before the key Sig(A) is compromised, then K re-
mains a secret known only to A and B. Note that, if B will-



ingly engages in a run with a dishonest principal then nei-
ther secrecy nor forward secrecy of the resulting session-
key can be expected.

2.3. Restricting the network

Let k0 ∈ Kba be a session-key established using a long-
term key lk0 between two honest principals a and b. Our
goal is to prove that NET sat fs(k0, lk0) for some protocol
model NET. However, we can ease this task by first apply-
ing some simple CSP manipulation. Expanding the defini-
tion of fs for NET, we obtain the goal:

NET sat
({signal.b.a.k0} St precedes {leak.lk0}
⇒ secret {k0})

Let TR be the set of traces of NET that satisfy the antecedent
{signal.b.a.k0} St precedes {leak.lk0} :

Definition 6

TR = {tr ∈ traces(NET) |
{signal.b.a.k0} St precedes {leak.lk0}(tr)}

Lemma 1 TR ⊆ traces(NET)

This is an immediate consequence of Definition 6.
TR is both non-empty (since the empty trace 〈〉 satis-

fies the antecedent) and prefix-closed (since, if s � t sat-
isfies the antecedent then so will s). The trace set TR can be
seen as representing a restriction of the network described
by NET. Since a CSP process is defined in terms of its traces
we can (at least in this case) define a new process, NET ′,
whose traces are precisely those in the set TR. Intuitively,
NET′ is the process whose traces are those of NET in which
signal.b.a.k0 always precedes leak.lk0.

Let K be the set of session-keys from which k0 is drawn
and let LK be the set of long-term keys from which lk0 is
drawn. RES is a process that blocks the event leak.lk0 until
such time as signal.b.a.k0 has occurred:

RES = signal?b?a?k →
if k = k0 then RUNX else RES

� leak?k : (LK \ {lk0}) → RES

where X = {| signal, leak |}
RUNX is a special process that is always willing to com-

municate any event in the set X (See Appendix A). Based
on this we can define NET ′ as follows:

Definition 7 NET ′ = NET |[ X ]|RES

NET ′ forces the synchronisation of all leak and signal
events between NET and RES, and we can demonstrate that
NET ′ has as its traces precisely the set TR:

Theorem 2 traces(NET ′) = TR

Proof. Consider a trace tr ∈ traces(NET ′). By definition
of NET ′, tr ∈ traces(NET |[ {| signal, leak |} ]|RES). The
semantics of CSP interface parallel then tell us that tr ∈
traces(NET) (i) and tr � {| signal, leak |} ∈ traces(RES).
By definition of RES we have that whenever leak.lk0 ap-
pears in tr it is preceded by an event signal.b.a.k0 for some
a, b, and so {signal.a.b.k0} St precedes {leak.lk0}(tr) (ii).
Finally from Definition 6, (i) and (ii) yield that tr ∈ TR. The
same argument works in the opposite direction to show that
tr ∈ TR ⇒ tr ∈ traces(NET′). �

The assumption {signal.b.a.k0} St precedes {leak.lk0}
on NET has been absorbed into NET ′ and this enables us to
rewrite the fs trace specification to a simpler form:

NET′ sat secret {k0}
In doing so we have reduced a forward secrecy predicate
over the whole network (NET) to a secrecy predicate over a
restricted subset (NET ′) of that network. If we can prove
that NET ′ sat secret {k0} then we will have shown that
NET sat fs(k0, lk0). Applied to our running example, we
are left to prove that NET ′ sat secret {K} where K ∈ Kba

for some honest principals a and b.

3. Temporal rank functions

In this section we introduce a proof technique suitable
for verifying whether the forward secrecy property of the
previous section holds for a given protocol. In particular, we
obtain a specialised theorem that applies to secrecy proper-
ties on the protocol network. This theorem is the core of the
proof strategy presented in this paper; it provides a suffi-
cient list of conditions whose achievement guarantees that
NET ′ sat secret T for a set T.

3.1. Time tags

Consider an instance of the Boyd protocol where the
session-key K is established between A and B using the
long-term key Sig(A) and that Sig(A) is subsequently com-
promised at some time n. For simplicity we assume that B’s
signing key, Sig(B), is not leaked, and so define the set TS of
temporary secrets as TS = {Sig(A)}. The intruder’s capa-
bilities are increased at time n since from this point he can
use Sig(A) to sign anything he knows and can send the re-
sultant message to any principal willing to accept it, whilst
masquerading as A. The messages that the intruder can gen-
erate can be divided into several categories: (i) those he can
generate before time n, (ii) those he can generate at or af-
ter time n, and (iii) those he can never generate. In fact, we
can go further and tag each message m in the space of the
protocol with a label t ∈ N

∞ representing the earliest time



at which m can be assumed to be generable by the intruder
without affecting the correctness of the protocol.

For example, since usernames are generally included in
the intruder’s initial knowledge we would tag A and B with
0, denoting the fact that the intruder knows them at time 0.
Similarly, since A makes the ephemeral public-key pk avail-
able before Sig(A) is leaked we would tag it with a label
in the range 0 ≤ t < n. Furthermore, since Sig(A) be-
comes available at time n we would label it as such. Finally,
messages (such as the session-key K) which should never
be generable by the intruder would be tagged with infin-
ity (∞). It may be helpful to think of ∞ as denoting that the
message is not generable in finite time, although for practi-
cal purposes it will only mean that it is computationally in-
feasible for the intruder to deduce the message.

Our verification approach is based on the interpretation
of a time tag as a rank, and we will say that a message m
has a rank t (written ρ(m) = t) if it is safe to assume that
m is generable by the intruder at time t. We will wish to
prove that, at time t, the intruder is incapable of generat-
ing any message with a rank greater than t. This will en-
able us to conclude that messages such as K are actually not
generable by the intruder until time ∞ and, therefore, re-
main secret. In the remainder of this section we formalise
the notion of a temporal rank, introduce our central theo-
rem, and show how we can use it to prove that Boyd’s pro-
tocol meets its forward secrecy goal.

3.2. Temporal ranks

A rank function is a function from the space of messages
M to the set of natural numbers with infinity: N

∞.

Definition 8 Let M be the message-space of a protocol.
Then define ρ to be the function ρ : M → N

∞

Our intention is to define a rank function over the message-
space of NET ′ such that the rank of a message m, written
ρ(m), respects the time at which m becomes available to the
intruder. Messages known initially to the intruder (m ∈ IIK)
will have ρ(m) = 0. If, on the other hand, m should be un-
available to the intruder we will typically assign it a rank
of ∞. Messages that become available to the intruder dur-
ing the course of the protocol will be assigned some (pos-
sibly non-zero) finite rank. A rank function effectively par-
titions the message-space into the set of messages that the
intruder can know (those with finite ranks) and those that
should remain secret (those with a rank of ∞). Rank func-
tions operate on messages communicated as events in the
traces of a CSP process. We lift ranks to events in the sense
that ρ(trans.a.b.m) = ρ(rec.a.b.m) = ρ(leak.m) = ρ(m)
and to sets by defining ρ(S) to be the rank of the highest
ranked message in S.

Generally speaking, the traces of a CSP process do not
have any concept of time. However, we can impose a sense

of discrete time onto traces by taking the time of an event
to be its position in a trace. We define the leak-time of a key
k in a trace tr (written τ(k, tr)) to be the position in the se-
quence tr at which leak.k first occurs. If leak.k does not oc-
cur in tr then τ(k, tr) = ∞.

Definition 9 Assuming that k /∈ IIK, if ¬(leak.k in tr) then

τ(k, tr) = ∞, else let tr = tr′ � 〈leak.k〉 � tr′′ such that
¬(leak.k in tr′), then τ(k, tr) = #tr′ + 1

The following examples will help to clarify this:

1. If tr0 = 〈leak.k〉 then τ(k, tr0) = 1 .

2. If tr1 = 〈trans.a.b.m, rec.b.a.m, signal.a.b.k, leak.k〉
then τ(k, tr1) = 4 .

3. If tr2 = 〈trans.a.b.m1, rec.b.a.m1, trans.a.b.m2〉 then
τ(k, tr2) = ∞ .

Note that, since leak.k is not preceded by the corresponding
signal event in tr0, tr0 /∈ traces(NET ′).

As discussed earlier, the rank of a message may be de-
pendent on the leak-time of some long-term key. Further-
more, the leak-time will not generally be fixed but will oc-
cur at different times for different traces of NET ′. Rather
than define a distinct rank function for each possible sce-
nario we use the concept of a family of rank functions
ρ, parameterised by n, such that the rank function ρ n will
apply precisely when the leak-time of k in a trace tr0 ∈
traces(NET ′) is n. When n is understood we may omit the
subscript and simply write ρ.

Let T be a set of values that should not appear in any
trace of NET ′. T will usually contain the session-key k, but
may also include long-term secrets that we disallow the in-
truder from compromising. We are now in a position to give
a list of conditions that, if satisfied, guarantee that no mem-
ber of T can be discovered by the intruder in NET ′. Follow-
ing the statement of the central theorem, we discuss each
condition in turn.

Theorem 3 Let T be a set of messages and let IIK be
the intruder’s initial knowledge. If there exists a family
of rank functions, ρ, such that each member ρn satisfies:

C1 ρn(IIK) = 0

C2 ∀ S ⊆ M, m ∈ M.S � m ∧ ρn(S) = t ⇒ ρn(m) ≤ t

C3 ∀m ∈ T.ρn(m) = ∞
C4 ∀ u ∈ U \ {E}, tr ∈ traces(NET ′).

tr � {| trans.u, rec.u, signal.u |} holds ρn

C5 ∀m ∈ TS.ρ(leak.m) < ∞
then NET ′ sat secret T

Proof. See Appendix B.
C1 — Condition C1 essentially amounts to an assump-

tion on the initial information available to the intruder. The
requirement that ρn(IIK) = 0 states that, at the start of the



protocol, the intruder does not know any secret or compro-
misable keys.

C2 — The second condition:

∀ S ⊆ M, m ∈ M.S � m ∧ ρn(S) = t ⇒ ρn(m) ≤ t

is a requirement on the generates relation, �. It says that
if the intruder knows a set of messages S with rank t, any
message m generated from S under � should have a rank no
greater than t. Stated another way: at any time, the intruder
can only generate messages which are safe for him to know
at that time. Since, from C1, we have that the intruder be-
gins by only knowing messages of rank 0, C2 allows us to
conclude that the intruder cannot send a message of rank ∞
unless he has previously received (from some other princi-
pal or via leak) a message with infinite rank.

C3 — This is a statement about the contents of the set
T. Since T should contain the messages (or, more correctly,
the events) that we wish to keep secret we must ensure that
each of these messages has a rank of ∞. C3 allows us to
conclude that this is indeed the case.

C5 — The final condition is a straightforward obligation
on the set of leakable secrets, namely, that they are assigned
a finite rank.

C4 — This condition is essentially an obligation on the
users of the system: that no honest principal can send a mes-
sage of infinite rank unless it has previously received a mes-
sage of infinite rank. The specification holds ρn is defined
as follows:

Definition 10

holds ρn ⇔
ρn(tr ⇓ rec) �= ∞ ⇒ ρn(tr ⇓ trans) �= ∞

By showing that C4 holds we rule out the possibility that
any of the honest principals introduces a message of infi-
nite rank, and if the network admits such a message it must
therefore have been introduced by the intruder. (Since C1,
C2 and C5 tell us that the intruder cannot introduce such a
message either, the combination of C1, C2, C4 and C5 tells
us that no infinite rank message can pass through the sys-
tem. Since all messages in T have rank ∞ (C3) we can con-
clude that all elements of T remain secret.) Curiously, the
stronger, and more obvious, definition of ‘holding the rank’
— where the rank of emitted messages is not greater than
the rank of received messages — is unnecessary (see the
proof of Theorem 3 in Appendix B).

Note that C4 is a condition upon the traces of events
communicated by each principal and it is worthwhile to
consider how the traces of a process USERa in NET are re-
lated to the traces involving a in NET ′. Consider an arbi-
trary trace tr0 ∈ traces(NET ′) restricted to the events in
which a principal A takes part:

trA = tr0 � {| trans.A, rec.A, signal.A |}

NET ′, recall, is the parallel composition:

NET |[ {| signal, leak |} ]|RES

which blocks the performance of the event leak.lk un-
til signal.a.b.k has been communicated. leak events orig-
inate at the ENEMY and not with user processes, so trA ∈
traces(USERA). Put another way, any behaviour possible by
A in NET ′ will be exhibited by USERA in NET. When we
come to prove C4 for a given rank function it will be con-
venient, and sufficient, to do so by inspection of the pro-
cesses USERa together with the assumption that, whenever
leak.Sig(A) occurs then signal.a.b.K must have previously
been communicated.

3.3. Proving Boyd’s protocol correct

We now conclude our running example by showing how
the above strategy can be used to prove that Boyd’s protocol
provides partial forward secrecy on an unbounded network:

1. a → b : pk · na · {pk · b}Sig(a)

2. b → a : {k}pk · {h(k) · a · na}Sig(b)

The forward secrecy goal that we wish to establish cor-
responds to the following predicate (for some session-key
K ∈ KBA where A and B are honest):

NET sat fs(K, Sig(A))

We consider the CSP model of Figure 3 and look at a partic-
ular, but arbitrarily chosen, run in which A acts as initiator
and attempts to establish a session-key with B. Similarly,
B acts as responder and attempts to establish the session-
key K with A. We tailor the ENEMY process by setting
TS = {Sig(A)}. Our goal is to construct a family of rank
functions that satisfy conditions C1–C5 by characterising
the times at which messages become known to the intruder.
We define T = {K} to be the set of values that must re-
main secret. We assume that Sig(A) becomes available to
the intruder via the channel leak:

Assumption 1 Sig(A) is unknown to the intruder until it
appears on channel leak.

Some care is needed in stating this assumption since it pre-
sumes the intruder cannot manipulate earlier protocol mes-
sages in a way that will cause Sig(A) to be revealed. In this
case the assumption can be justified by applying Guttman’s
concept of immediate safety [11]: Sig(A) is immediately
safe since it is not known initially to the intruder and is not
sent as a component of any message. Under the perfect en-
cryption assumption, Sig(A) remains secret until it appears
on channel leak.

A suitable rank function is given below. We omit a for-
mal proof but instead present a discussion of the rank func-
tion and an informal argument as to why C1–C5 hold. In



particular, we show how the restriction of NET to NET ′ is
fundamental to the proof strategy.

We begin by defining the rank of usernames and nonces,
which in both cases we set to be 0:

USERNAMES ρn(u) = 0
NONCES ρn(na) = 0

We assume that the intruder has all usernames in his ini-
tial knowledge. Since the protocol uses public nonces we
must assign them a finite rank. However, it turns out that
the protocol is still secure if we assume, as we do here, that
they are known to the intruder initially (by assigning a rank
of 0). The idea of assigning a lower rank to a message than
is strictly necessary is a useful trick that can help to reduce
the complexity of a rank function. It is sound since it as-
sumes the worst-case: if we can prove security in this con-
text then the security goal will still hold if we later decide
to assign the message a higher rank.

HASHES ρn(h(m)) = ρn(m)
PAIRS ρn(m1 · m2) = max(ρn(m1), ρn(m2))

We define the rank of a hashed message as equal to the
rank of the unhashed message, since the intruder knows
the hash function h and can deduce h(m) as soon as he
learns m. The rank of a concatenation m1 · m2 is the great-
est rank of its components.

EPH-KEYS ρn(pk) = 0

ρn(pk−1) =

{
∞ if pk ∈ PKAB

0 otherwise

SIG-KEYS ρn(Sig(u)) =

⎧⎪⎨
⎪⎩

∞ if u = B

n if u = A

0 otherwise

ρn(Sig−1(u)) = 0

SESS-KEYS ρn(k) =

{
∞ if k = K

0 otherwise

When assigning a rank to keys, we give a rank of 0 un-
less it is absolutely necessary to do otherwise. The inten-
tion is to state the secrecy of just those values required to
meet the security goal. So we assume, for example, that
all session-keys apart from K are known initially to the in-
truder. Note that the rank of signing-keys respects the fact
that Sig(B) is never leaked and Sig(A) is leaked at time n.
We assume that all other signing-keys are known to the in-
truder from the start.

ENCRYPTS ρn({k}pk) =

⎧⎪⎨
⎪⎩

∞ if pk /∈ PKAB

∧ k = K

0 otherwise

The rank of encryptions follows from our assumption
about the secrecy of session-keys. The intruder should never
learn K and should never learn an encryption of K with any
key other than those used by A to initiate to B.

The most subtle aspect of this rank function is its treat-
ment of signatures. Sig(B) is never leaked and, therefore,
the only messages signed using Sig(B) will be those match-
ing the pattern of the protocol messages. For each principal
u these messages are captured by S(u):

S(u) = {pk · v | pk ∈ PKu, v ∈ U}
∪ {h(k) · v · na | k ∈ Ku, v ∈ U, na ∈ N}

where PKu =
⋃

v∈U PKuv. We define the rank of signa-
tures as follows:

SIGNATURES ρn({m}Sig(B)) =

{
0 if m ∈ S(B)
∞ otherwise

ρn({m}Sig(A)) =

⎧⎪⎨
⎪⎩

0 if m ∈ S(A)
max(ρn(m), n)

otherwise

ρn({m}Sig(u)) = ρn(m) (u /∈ {A, B})

The interesting case involves the key Sig(A). Before time
n the only messages signed with Sig(A) are those that the
protocol designer intended: the messages in the set S(A).
We can safely assume that such messages are available to
the intruder initially, and so assign them a rank of 0. After
n, however, the intruder can sign any message m he knows
using Sig(A). In this case, the rank of the resultant message
is the greater of the two ranks ρn(m) and n.

Since the intruder cannot engage in events on the signal
channel, we can safely define ρn(signal.a.b.k) = 0.

Informally, the set IIK can be constructed to conform to
condition C1: that all messages in IIK have a rank of 0. C3:
that every message in T has a rank of ∞ — trivially holds
since we have defined T to be the singleton set {K} and
ρn(K) = ∞.

C2 may be proven by considering each of the clauses
defining � in turn. For example, if we consider the rule
for hashing then we need to prove that ρn(m) = t ⇒
ρn(h(m)) ≤ t. From the definition of the rank of hashes
we see that ρn(h(m)) = ρn(m) so the implication holds.

C4 must be proven for all USERa processes. If we pro-
ceed by a case analysis we find we must show that each of
the following processes hold the rank:



1. UserI(a, b, pk, na) for a �= A

2. UserI(A, b, pk, na) for b �= B

3. UserI(A, B, pk, na)
4. UserR(b, a, k) for b �= B

5. UserR(B, a, k) for a �= A

6. UserR(B, A, k)

The first five cases are straightforward to prove. The fi-
nal case, UserR(B, A, k), is more interesting:

UserR(B, A, k) =
rec.B.A?(pk · na · {pk · B}Sig(A))
→ signal.B.A.k
→ trans.B.A.({k}pk · {h(k) · A · na}Sig(A))
→ Stop

According to the definition of C4 we are required to
show that, if ρ(pk · na · {pk · b}Sig(A)) �= ∞ then ρ({k}pk ·
{h(k) · A · na}Sig(A)) �= ∞.

From the rank function we can immediately deduce that
ρ({h(k) · A · na}Sig(A)) = 0. By the rank of concatena-
tion it remains to show that ρ({k}pk) �= ∞. By assump-
tion ρ(pk · na · {pk · B}Sig(A)) �= ∞. An examination of the
rank function shows that there are two cases to consider, ei-
ther (i) ρ({pk · B}Sig(A)) = 0 or (ii) ρ({pk · B}Sig(A)) = n.

(i) If ρ({pk ·B}Sig(A)) = 0, then we can deduce that pk ∈
PKAB which results in ρ({k}pk) = 0.

(ii) If ρ({pk · B}Sig(A)) = n the rank function tells us
that pk /∈ PKAB and that Sig(A) has been compromised. As-
sumption 1 then enables us to deduce that leak.Sig(A) has
occurred. However, since:

NET ′ sat {signal.A.B.K} St precedes {leak.Sig(A)}

K must already have been established as a session-key and
therefore k �= K in {k}pk. Finally, the rank function tells us
that k �= K ⇒ ρ({k}pk) = 0, and so the condition holds.

Finally, it is clear that C5 holds, since only messages
from TS can appear on the channel leak, TS = {Sig(A)}
and ρ(Sig(A)) = n.

Since C1–C5 hold of ρ we can conclude that NET ′ guar-
antees the secrecy of K and, by implication, we can con-
clude that the forward secrecy goal:

NET sat fs(K, Sig(A))

is also met. Establishing this result only allows us to con-
clude partial forward secrecy with respect to Sig(A). To es-
tablish full forward secrecy we would also need to consider
the compromise of B’s long-term key. By taking the pes-
simistic view — that both keys become available as soon
as the first is compromised — such a proof is straightfor-
ward to construct.

4. A further example: the Cliques protocol

The Cliques protocols [1] provide key distribution ser-
vices for dynamic groups. We consider a particular proto-
col from the Cliques suite, A-GDH.2, which is used to es-
tablish a Diffie-Hellman key between a group of principals
of arbitrary size, such that each principal contributes to the
key. The protocol consists of two stages. In the first (upflow)
stage the group is traversed by a message that collects the
contributions made by each principal. The final group mem-
ber to receive this message is designated as the controller,
who carries out the second stage by broadcasting the col-
lected keying material to each member of the group.

For a group of size s, each principal ui (i ∈ [1, s])
chooses an ephemeral Diffie-Hellman value xi and main-
tains a long-term key K−1

is whose inverse, Kis, is known to
the controller us. A suitable prime-order subgroup of Z

∗
p

and generator g of G have been (publicly) agreed upon:

Upflow: round i | i ∈ [1, s − 1]
ui −→ ui+1 : {g

x1...xi
xk | k ∈ [1, i], gx1...xi}

Broadcast: round s
us −→ ui|i∈[1,s−1] : g

x1...xs
xi

.Kis

Upon receipt of the above, each ui computes

g(
x1...xs

xi
.Kis).K

−1
is .xi = gx1...xs = K

Since the long-term keys cancel, the commutativity of
exponentiation means that K is shared between all of the
principals. We can use a temporal rank function to reason
about the forward secrecy of this protocol.

We take an abstract view of the Diffie-Hellman operation
in which every value is an exponentiation of the generator
g by some product of random numbers and long-term keys.
We write DH(x, y) to represent the exponentiation xy mod p
and write DH(g, x · y) as a shorthand for DH(DH(g, x), y).
We make use of an ingredients function ι that returns the
multiset of components that make up a message. For exam-
ple, ι(DH(g, x · x · z)) = [[x, x, z]]. We also extend the model
of the intruder to enable him to perform exponentiation and
to compute the multiplicative inverse of a value:

DH
S � d S � d0

S � DH(d, d0)

INVERSE

S � d

S � d−1

Since computation takes place in an abelian group we
must also address the algebraic properties of such computa-
tion. In particular, we need to take into account the commu-
tativity of exponentiation (since gxy = gyx) and the cancel-
lation of multiplicative inverses (since gxyx−1

= gy). Previ-
ous work has captured the equivalence of such messages us-
ing a term rewriting system [5]. Here it will suffice to intro-
duce three algebraic equivalences onto the message space:



DH(x, y · z) = DH(x, z · y)
DH(x, y · 1) = DH(x, y)

DH(x, X · w · Y · w−1 · Z) = DH(x, X · Y · Z)

(where any of X, Y and Z may be the identity element 1).
These equations result in a further proof obligation on the
rank function; namely, that whenever two Diffie-Hellman
messages are equivalent (according to the above equations)
we assign them the same rank.

We consider (partial) forward secrecy from the point of
view of a principal u1 = A who contributes x1 = xA to com-
pute the key K in a run of the protocol in which u s = C is the
group controller and K1s = KAC is the long-term key. As be-
fore, the protocol is modelled by a CSP process NET, and
the security condition is:

NET sat fs(K, KAC)

where the process representing C performs the signal event
for A on receipt of the upflow message, and leak.KAC signals
that KAC has been compromised. In this instance we adapt
our intruder process ENEMY so that no key other than KAC

can be leaked.
As before, we consider the restricted process NET ′

which satisfies the condition that, in any trace of NET ′,
an occurrence of leak.KAC is preceded by signal.A.C.K.
We define n = τ(KAC, tr) as the time at which the key
KAC is compromised. Our goal is to construct a fam-
ily of rank functions, parameterised by n, that charac-
terises the messages that can occur before, at, and after
time n.

We assign a rank of n to the compromised long-term key
KAC:

ρn(k) =

⎧⎪⎨
⎪⎩

n if k = KAC

∞ if k = KuC ∧ u �= E

0 otherwise

Assigning a rank to Diffie-Hellman values is non-trivial, but
we can make use of the fact that the group controller, C,
only ever transmits messages to which he has added both a
long-term secret and an ephemeral secret. Other principals
will only transmit messages to which they have added an
ephemeral secret. Let cs(d) be the number of C’s ephemeral
secrets and lt(d) the number of long-term secrets in a Diffie-
Hellman value d. Formally, if LK is the set of all long-
term secrets shared by honest principals and SC is the set
of ephemeral secrets known to the controller C, define:

cs(d) = #(SC � ι(d))
lt(d) = #(LK � ι(d))

(where U � R is the relation R restricted to domain U). Us-
ing this, we define the rank of a Diffie-Hellman value d as:

ρ(d) =

{
0 if (cs(d) + lt(d)) mod 2 = 0
∞ otherwise

Unfortunately, we find that this function does not satisfy
condition C2 of Theorem 3: the intruder is able to pro-
duce a message of rank > n from messages with rank
≤ n. Consider the case where the intruder uses the mes-
sage DH(g, xA) (rank 0) and the key KAC (rank n) to pro-
duce the message DH(g, xA · KAC). Since DH(g, xA · KAC)
contains one long-term secret and none of the controller’s
ephemeral secrets it receives a rank of ∞ and so C2 fails.

Generally speaking, we cannot conclude protocol inse-
curity from the failure of a rank function since a different
rank function may exist which is sufficient to prove proto-
col correctness. In this case, however, the failure leads us to
deduce the following attack (described for a group of size
3):

1. A → B : {g, gxA}
2. B → C : {gxA, gxB , gxAxB}
3a. C → E(A) : gxBxCKAC

3a′ E(C) → A : gxB

3b. C → B : gxAxCKBC

In the attack, the intruder observes the first two proto-
col messages (noting the value gxAxB in message 2), inter-
cepts A’s component of the broadcast message from C (3a)
and replaces it with gxB(3a′). On receipt of the broadcast,
A computes the key gxBK−1

AC xA . At a later stage KAC becomes
available to the intruder who then deduces K−1

AC and uses
the value gxAxB (remembered from earlier) to compute the
key gxAxBK−1

AC . The intruder now shares a key with A, mark-
ing the failure of forward secrecy.

This attack is a simpler version of one proposed by
Pereira and Quisquater [20] who demonstrated attacks on
each of the main security goals of the Cliques protocols.
The same authors have more recently shown that any pro-
tocols built using the rationale of Cliques are irreparably
flawed, at least in situations where the group contains four
or more principals [21].

5. Discussion

As promised, we now discuss why the standard (two-
valued) rank function approach is incapable of verifying
forward secrecy properties.

In the original rank function approach [23] positive ranks
were used to denote public messages and non-positive ranks
were assigned to secret messages. It was soon discovered
[13] that this is equivalent to using just two ranks, pub for
public and sec for secret messages2. This binary view of se-
crecy allows us to make all-or-nothing assertions about the

2 Previous work has tended to use the ranks 0 and 1 to denote secret and
public messages. For the temporal ranks described above we use 0 for
a different purpose, namely, to denote messages available to the in-
truder at the start of a protocol. We use the emotive ranks pub and
sec in this discussion to avoid confusion.



secrecy of messages: a message m is either completely se-
cret (ρ(m) = sec) or completely public (ρ(m) = pub).
In fact, it turns out that setting ρ(m) = pub is equivalent
to saying that it should be safe for the intruder to know m
at the start of the protocol. This can be stated another way.
Consider some protocol P, and a (two-valued) rank func-
tion ρ that is sufficient to prove that P meets some secrecy
goal with respect to the intruder’s initial knowledge: IIK 0.
If there exists a message m /∈ IIK0 with ρ(m) = pub then ρ
is also sufficient to show that P meets the same secrecy goal
with respect to the initial knowledge IIK 1 = IIK0 ∪ {m}.
Recall that, for a security goal expressed as a trace speci-
fication, the existence of a rank function allows us to con-
clude that the protocol meets the security goal.

Theorem 4 Let ρ be a rank function with respect to the in-
truder’s initial knowledge IIK0. If there exists some m /∈
IIK0 satisfying ρ(m) = pub then ρ is a rank function with
respect to IIK1 = IIK0 ∪ {m}.

Proof. The two-valued central rank theorem [23] gives four
healthiness conditions that a rank function must satisfy. It
is straightforward to show that, for each of these, if ρ sat-
isfies the condition w.r.t IIK0 then ρ must also satisfy the
condition w.r.t IIK1. �

This goes against intuition. A message m may become
available to the intruder at some point in a protocol run,
but this does certainly not mean that the message should
be known to the intruder initially. In fact, Heather [12] has
given an example of a (contrived) protocol that contains a
temporary secret — a value that must remain secret for a
protocol to reach its secrecy goal but may then be safely
leaked — and has shown that such protocols, even if cor-
rect, are unverifiable using two-valued rank functions. Ar-
guing pragmatically, this incompleteness is only of theoret-
ical interest unless it can be shown to hamper our ability
to reason about real (i.e., uncontrived) protocols. However,
since compromised keys are temporary secrets, we are faced
with the conclusion that forward secrecy properties are un-
verifiable using the standard approach.

We can illustrate this with an example. Consider an in-
stance of the Boyd protocol, modified so that A makes
Sig(A) public after the key exchange has taken place:

1. A → B : PK · NA · {PK · B}Sig(A)

2. B → A : {K}PK · {h(K) · A · NA}Sig(B)

3. A → B : Sig(A)

The results of the previous section allow us to conclude
that a run of the protocol should provide forward secrecy;
that, even after Sig(A) is leaked, the session-key K should
remain secret. To see why a two-valued rank function can-
not be used to prove this property we can attempt to cre-
ate one. We assume that the usernames of principals are
public; in particular, ρ(A) = pub. Since Sig(A) is sent in
the clear we are forced to set ρ(Sig(A)) = pub. For any

ephemeral key-pair (PK ′, SK′) invented by the intruder we
have ρ(PK ′) = ρ(SK′) = pub, and since the intruder can
use these facts to construct the message {PK ′ · B}Sig(A) we
are compelled to set ρ({PK ′ · B}Sig(A)) = pub. Now, if
the intruder, masquerading as A, sends this message to B,
B will respond with {K}PK′ and the intruder can use SK ′

to deduce the session-key K. We are therefore forced to set
ρ(K) = pub, whereas our hope was for K to remain secret.
Some thought leads us to conclude that this attack will not
work since Sig(A) is not made public until after K has been
accepted by A. However, Theorem 4 tells us that rank func-
tions cannot distinguish a message that is made public at the
end of a protocol from a message that is public at the start
of the protocol. Therefore, using a two-valued rank func-
tion means that setting ρ(Sig(A)) = pub is the same as say-
ing that Sig(A) ∈ IIK. If Sig(A) is known to the intruder at
the start then the protocol clearly cannot guarantee the se-
crecy of K.

A rank function is an abstraction technique that allows
us to prove trace specifications of CSP processes without
requiring us to consider the traces directly. A trace records
one possible history of a process. In the above example, if
the event trans.A.B.Sig(A) appears in a trace, it will always
be preceded by the event rec.A.B.{K}PK′ · . . . , represent-
ing the fact that A accepts the session-key before Sig(A) is
leaked. Thus, a trace does not simply convey information
about which messages appear, but also when they appear. A
two-valued rank function abstracts away all of the temporal
information present in the trace and just tells us what mes-
sages can occur. However, for protocols containing tempo-
rary secrets, this temporal information is vital if we are to
prove their correctness. In such cases two-valued rank func-
tions abstract away too much.

Temporal ranks overcome this problem by lifting state
information from the trace into the rank function. A tempo-
ral rank function for the example above would say that the
password is leaked at some time n and set ρ(Sig(A)) = n.
The ranks of other messages pivot around n in the sense
that a message made public before n is assigned some rank
0 ≤ r < n and a message available at or after n is assigned a
rank in the range n ≤ r ≤ ∞. Crucially, the offending mes-
sage {PK′ · B}Sig(A) would be assigned a rank of n and the
message {K}PK would be assigned a rank less than n, rep-
resenting the fact that A′s reception of the session-key pre-
cedes the compromise of the password. At time n, A is there-
fore unwilling to accept the intruder’s faked message and so
the forward secrecy property holds.

6. Conclusion

In this paper we have shown how forward secrecy prop-
erties of crypto-protocols can be expressed and reasoned
about using rank functions. We have introduced the concept



of a temporal rank function that not only allows us to rea-
son about what messages an attacker can deduce, but when
in the protocol he can deduce them. We have applied the ap-
proach to two examples, establishing a proof of correctness
in one case and rediscovering an attack in the other. Both
of these examples considered a protocol running on an un-
bounded network that allows principals to engage in arbi-
trarily many protocol runs concurrently. We also described
the motivation for using temporal ranks by demonstrating
that some protocols may be unverifiable when using tech-
niques that classify values as simply public or secret.

The present work can be seen as contributing to a grow-
ing body of research that aims to move beyond the familiar
realms of perfect encryption, authentication, and secrecy, by
relaxing the restrictions on the intruder and considering the
wider class of security properties that become relevant as a
result.

It is interesting to note that all of the rank functions given
in this paper are three valued: 0, n and ∞ and, in fact, it
would have been sufficient to fix n at some arbitrary finite,
non-zero, value. In general, a temporal rank function will be
three-valued if all compromised values are assumed to be
leaked at the same time. In the worst case, a temporal rank
function with k separate leak points will have k + 2 distinct
ranks. It is not clear whether, in practice, more than three
ranks will ever be required. If three ranks are indeed suf-
ficient, then the theory presented above should almost cer-
tainly be refined to reflect this fact. In seeking to present
a general theory we have had to introduce some concepts
(such as the idea of a family of functions) which would be
redundant in a three-rank theory.

A temporal rank function can be viewed as establish-
ing a hierarchy of secrecy, where a message m1 is less se-
cret than a message m2 if ρ(m1) < ρ(m2). One message
is therefore more secret than another if it must remain se-
cret for longer. Such a fine-grained notion of secrecy has
proven useful in the present work, and it would be interest-
ing to consider whether temporal ranks can be applied in a
more general setting.

At a higher level of abstraction, our treatment of forward
secrecy allows us to form a rather natural hierarchy of se-
crecy specifications, since, in our model, secrecy is implied
by the presence of partial forward secrecy and, in turn, par-
tial forward secrecy is implied by the presence of full for-
ward secrecy. This invites us to verify security protocols in a
similarly hierarchical way; either by working upwards from
secrecy or downwards from some stronger condition. The
top-down approach (starting with, say, full forward secrecy)
would tend to involve a more difficult proof but would have
the pleasing side-effect of guaranteeing all weaker secrecy
goals by implication. Developing useful notions of secrecy
that extend this hierarchy, in either direction, seems an in-
teresting research challenge.
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A. CSP

CSP is a notation for describing concurrent systems in
terms of processes which perform events. Communication

is achieved by prefixing. The communication a → P is the
process that performs the event a and then behaves like P.
Events may be structured in terms of channels where the
event c.v denotes the communication of value v on channel
c. Compound events can be used to model input and out-
put where, by convention, input is represented using ‘?’ and
output using ‘!’: so, for example, c?v : T → P(v) is the pro-
cess that inputs on channel c any value v of type T and then
behaves as P(v). The concept of choice is modelled with the
� operator such that the process P = a → P � b → P is
prepared to perform either a or b, and the choice is deter-
mined by the environment. The generalised choice operator
�

i∈I
Pi allows the environment to choose between a fam-

ily of processes {Pi | i ∈ I}. Conditional choice can be
written in the form — if G then P else Q —- where G is a
boolean guard.

Processes may be composed in parallel to perform hand-
shaking synchronisation. The process P |[ X ]|Q forces the
processes P and Q to agree on all events in the set X. When
an event x ∈ X is performed by P |[ X ]|Q, both processes
perform the event. Events outside of X may proceed inde-
pendently. The communication set X will often be written
in the form {| x1, x2 |}; the {| |} syntax denotes the clo-
sure of events on channels x1 and x2. An interleaving of two
processes P ||| Q allows P and Q to proceed independently
of one another, without synchronising on any events. If an
event is performed that both P and Q are willing to commu-
nicate, only one process actually performs the event, and
is chosen non-deterministically. The generalised interleav-
ing operator |||

i∈I
Pi models the interleaving of a family of

processes {Pi | i ∈ I}. Σ is the set of all events. Two partic-
ularly important processes are Stop and RUNA. Stop is the
process that does nothing at all. RUNA:

RUNA =?x : A → RUNA

is the process which, for a set of events A ⊆ Σ, is always
willing to communicate any member of A that the environ-
ment desires.

Several semantic models of CSP exist, and in this paper
we make use of the simplest: the traces model. The traces
model describes each process P in terms of its observable
events, traces(P), the set of all possible sequences of events
that P can perform. traces(P) is always non-empty, since
every process can perform the empty trace 〈〉, and traces(P)
is prefix closed, meaning that if s � t is a trace, then so is
s. For example, traces(a → b → Stop) = {〈〉, 〈a〉, 〈a, b〉}.
We write #tr to mean the length of a trace tr. Each CSP
construct has an associated rule for the calculation of traces.
The traces of a process define the possible behaviour of that
process and are sufficient for reasoning about safety prop-
erties of a system.

If an event e occurs in a trace tr0 we write e in tr0. Con-
versely, if e does not occur in tr0 we write ¬(e in tr0) .



tr0 � T is the sequence tr0 restricted to T: the sequence
whose members are those of tr0 which are in T. For exam-
ple, if tr0 = 〈a, b, a, c〉 then tr0 � {a, c} = 〈a, a, c〉. If C
is a set of channels then tr0 ⇓ C is the sequence of values
that have been communicated along channels in C in tr0.
If tr0 = 〈input.a, output.b, input.c〉 then tr0 ⇓ {output} =
〈b〉. When C is understood as the singleton set {c} we may
omit the braces and write tr0 ⇓ c in preference to tr0 ⇓ {c}.

A modern presentation of the CSP language and its se-
mantic models can be found in [22, 24].

B. Proof of Theorem 3

To prove that NET ′ sat secret T we need to show that:

∀ tr ∈ traces(NET′).secret T(tr)

We prove, for an arbitrary trace tr0, that the existence of a
rank function ρn is sufficient to conclude secret T(tr) when
τ(k, tr) = n.

For a contradiction assume that C1–C5 hold, but also
that ¬(secret T(tr0)). Then there exists an occurrence in tr0

of some message t ∈ T. Since C3 tells us that ρn(t) = ∞
for any t ∈ T we have that there are some messages with
a rank of ∞. Let tr1 be the prefix of tr0 whose last mes-
sage is the first message of tr0 with rank ∞. The sequence

tr1 is the trace up to the point where the first rank ∞ mes-
sage occurs.

The prefix-closure of traces in processes tells us that
tr1 ∈ traces(NET ′). The last message of tr1 can take one
of three forms: leak.m, trans.u.v.m, or rec.u.v.m for some
u, v and m, where ρn(m) = ∞.

Case leak.m: from C5 we have that ρn(leak.m) < ∞,
forcing a contradiction.

Case rec.u.v.m: We have that tr1 is a trace of ENEMY
and, by Theorem 1, that (IIK ∪ (tr ⇓ {trans, leak})) � tr ⇓
rec and so (IIK∪ (tr1 ⇓ {trans, leak})) � m. But, by defini-
tion of tr1 we have that ρn(tr1 ⇓ {trans, leak}) �= ∞ since
all messages in tr1 apart from the last have a finite rank.
Therefore C1 and C2 yield that ρn(m) �= ∞, forcing a con-
tradiction.

Case trans.u.v.m: Let tru = tr1 � {trans.u, rec.u}. This
is the portion of tr1 in which USERu participates, so tru ∈
traces(USERu). Hence, by C4 we have that holds ρn(tru).
Expanding the definition we have that:

ρn(tru ⇓ rec) �= ∞ ⇒ ρn(tru ⇓ trans) �= ∞
from which it follows that ρn(tru ⇓ rec) �= ∞ ⇒ ρn(m) �=
∞. However, by definition of tr0 and hence tru we have that
ρn(m) = ∞, forcing a contradiction. In either case we find
a contradiction, which establishes the theorem. �


