
Verifying Controlled Components

Steve Schneider and Helen Treharne

Department of Computer Science� Royal Holloway� University of London

Abstract� Recent work on combining CSP and B has provided ways
of describing systems comprised of components described in both B �to
express requirements on state� and CSP �to express interactive and con�
troller behaviour�� This approach is driven by the desire to exploit exist�
ing tool support for both CSP and B� and by the need for compositional
proof techniques� This paper is concerned with the theory underpinning
the approach� and proves a number of results for the development and
veri�cation of systems described using a combination of CSP and B� In
particular� new results are obtained for the use of the hiding operator�
which is essential for abstraction� The paper provides theorems which
enable results obtained �possibly with tools� on the CSP part of the de�
scription to be lifted to the combination� Also� a better understanding
of the interaction between CSP controllers and B machines in terms of
non�discriminating and open behaviour on channels is introduced� and
applied to the deadlock�freedom theorem� The results are illustrated with
a toy lift controller running example�

� Introduction

Morgan�s failures�divergences semantics for event systems �Mor��� enables the
various CSP semantics to be given to B machines� These CSP semantics allow
machines to be treated as CSP components within a concurrent system	 and
we can combine them with other CSP components using architectural operators
such as parallel composition and abstraction�

Recent work �Tre��� has considered the interaction between a particular kind
of B machine and a controller written as a 
recursive� sequential CSP process�
An important property of a controller for a machine is that it should invoke ma�
chine operations only within their preconditions� Previous results �Tre��� have
identi
ed conditions su�cient to guarantee P k M to be divergence�free for a
controller P and machine M 	 which ensures this important property� These re�
sults require identi
cation of a control loop invariant 
CLI� on the state of the
B machine M 	 which must be true on every recursive call� This is established by
considering the semantics of the B operations as they are called within the con�
troller	 and essentially computing the weakest precondition required to establish
the CLI�

In combining communicating B machines	 we use a particular architecture
�ST��b� to restrict the interaction between components	 by ensuring that each
B machine interacts only with its own controller� A system will be structured as



CSP

B

P� P�

M� M� � � �

� � �

Fig� �� A CSP and B combined system architecture

a collection of B machines M�� ����Mn	 each with its own CSP controller process
P�� ����Pn� A controlled component is the parallel combination of a controller and
its B machine	 of the form P kM �

Each Mi is under the control of the corresponding Pi 	 and the Pi �s can also
interact with each other� This architecture is illustrated in Figure �� Interaction
across the system can occur only between the CSP processes� This approach
enables compositional veri
cation	 whereby we are able to verify properties of the
entire system by obtaining results about smaller structures within the system�
In particular	 both CSP and B already have mature tool support	 which we aim
to apply in the veri
cation of combined systems�

The model�checker FDR �For��� performs model�checking on systems de�
scribed in CSP	 and is therefore suitable for analysing the controllers	 individ�
ually and in combination� The paper provides theorems which enable results
obtained 
possibly with tools� on the CSP part of the description to be lifted to
the combination�� We obtain a number of theorems in the various CSP semantic
models�

In practice	 we 
nd that it is often the case that a property holds in a com�
bined system for reasons associated with the state within the B components� In
this case	 the CSP controller descriptions need to be augmented with the rel�
evant state information� This paper also provides theorems which support the
required manipulations of CSP controllers� A fuller version of this paper �ST��a�
gives rigorous proofs of all the theorems and lemmas� In this paper	 we provide
informal explanations of the theorems�

� Background

��� CSP Events

CSP processes are de
ned in terms of the events that they can and cannot do�
Processes interact by synchronising on events	 and the occurrence of events is
atomic� The set of all events is denoted by ��

� The FDR checks discussed in this paper are available at
http���www�cs�rhul�ac�uk�research�formal�steve�code�lifts�fdr�



Events may be compound in structure	 consisting of a channel name and
some 
possibly none� data values� Thus	 events have the form c�v����vn	 where c
is the channel name associated with the event	 and the vi are data values� The
type of the channel c is the set of values that can be associated with c to produce
events�

For example	 if trans is a channel name	 and N�Zis its type	 then events
associated with trans will be of the form trans�n�z 	 where n � N and z �Z� For
example	 trans���� is one such event�

A partial event	 or 
following �Sca���� partially completed datatype value is a
channel name together with some values	 but not necessarily all� For example	
trans�� is a partial event� Any channel is a special case of a partial event�

Given a set of partial events PE 	 we can de
ne the set of events fj PE jg
which are the completions of events in PE 	 as follows�

fj PE jg � fp�w j p � PE � p�w � �g

We use alphabetised CSP	 so every process has an alphabet	 which is the set of
events whose occurrence requires its participation� The alphabet of a process P
is denoted �
P�� For the purposes of this paper we will require that the alphabet
of any process is given by a set of channels C 	 so that �
P� � fj C jg�

��� CSP controllers

A controller for a B machine is a particular kind of CSP process� To interact
with the B machine	 it makes use of control channels which have both input and
output	 and provide the means for controllers to synchronise with B machines�
For each operation w �� e
v� of a controlled machine with v of type Tin
e�
and w of type Tout
e� there will be a channel e of type Tin
e� � Tout
e�	 so
communications on e are of the form e�v �w �

Controller descriptions may also include assertions about the values of vari�
ables they are using� These are incorporated in CSP either as blocking assertions

which block if the assertion is false� or as diverging assertions 
which diverge if
the assertion is false�	 depending on the role they play in veri
cation�

When we talk about a CSP controller P we mean a process which has a given
set of control channels C � The controlled B machine will have exactly fj C jg as
its alphabet� it can communicate only on channels in C �

Controller syntax Controllers are generated from the following subset of the
CSP syntax	 as discussed in �ST��b��

P ��� a � P jc�x � P jd �v � P je�v�xfE 
x �g � P je�v�x hE 
x �i � P j

P� � P�jP� u P�ju
x jE�x �

P j if b then P� else P�jS 
p�

where a and is a synchronisation event	 c is a communication channel accepting
inputs	 d is a communication channel sending output values	 e is a control chan�
nel	 x represents all data variables on a channel	 v represents all data values



being passed along a channel	 E 
x � is a predicate on x 
it may be elided	 in
which case it is considered to be true�	 b is a boolean expression	 and S 
p� is a
process expression�

The process a � P is initially prepared to engage in an a event	 after which
it behaves as P � The input c�x � P is prepared to accept any value x along
channel c	 and then behave as P 
whose behaviour can be dependent on x �� The
output d �v � P provides v as output� The operation call e�v�xfE 
x �g � P
is an interaction with an underlying B machine� the value v is passed from the
process as input to the B operation	 and the value x is accepted as output from
the B operation� If x meets the condition E 
x � then the process behaves as P �
If x does not meet the condition then the process diverges� On the other hand	
e�v�x hE 
x �i � P only allows e�v �x if E 
x �	 otherwise the event is blocked�
Behaviour subsequent to e�v �x is that of P �

The external choice process P� � P� is initially prepared to behave either
as P� or as P�	 and the choice is resolved on occurrence of the 
rst event�
Binary and general internal choice are possible	 though not used in the example
presented here� The conditional choice if b then P� else P� behaves as P� or P�

depending on the evaluation of the condition b� Finally	 the process expression
S 
p� expresses a recursive call�

��� CSP semantic models

There are three semantic models used in this paper� the Tracesmodel	 the Stable
Failures model	 and the Failures�Divergences model� We introduce the relevant
features of them here� Full details of these models can be found in �Ros��	Sch����
Traces A trace is a 
nite sequence of events� A sequence tr is a trace of a
process P if there is some execution of P in which exactly that sequence of
events is performed� The set traces
P� is the set of all possible traces of process
P � The traces model for CSP associates a set of traces with every CSP process�
If traces
P� � traces
Q� then P and Q are equivalent in the traces model	 and
we write P �T Q �
Stable Failures A stable failure is a pair 
tr �X � consisting of a trace tr and a
set of events X � Such a pair is a stable failure of a process P if there is some
execution of P on which tr is the sequence of events performed	 reaching a state
in which all events in X can be refused	 and also no internal progress is possible�
The set SF ��P �� is the set of stable failures of P � The stable failures model
for CSP associates a set of stable failures	 and a set of traces	 with every CSP
process� If SF ��P �� � SF ��Q �� and also traces
P� � traces
Q� then P and Q are
equivalent in the stable failures model and we write P �SF Q �
Failures and Divergences A divergence is a 
nite sequence of events tr � Such
a sequence is a divergence of a process P if it is possible for P to perform an
in
nite sequence of internal events 
such as a livelock loop� on some pre
x of tr �
The set of divergences of a process P is written D ��P ���

A failure is a pair 
tr �X � consisting of a trace tr and a set of events X � It is
a failure of a process P if either tr is a divergence of P 
in which case X can be
any set�	 or 
tr �X � is a stable failure of P � The set of all possible failures of a



process P is written F ��P ��� If D ��P �� � D ��Q �� and F ��P �� � F ��Q �� then P and
Q are equivalent in the failures�divergences model	 written P �FD Q �

The di�erent models are used to analyse CSP systems with respect to dif�
ferent properties� This paper is concerned with the failures�divergences model
is used to check for liveness properties such as divergence�freedom� If a system
description includes the possibility of divergence 
for example	 if it includes in�
ternal events�	 then it is necessary to use the failures divergences model to check
for divergence�freedom�

An important relationship between the stable failures model and the failures
divergences model is that if a process is divergence�free 
i�e� its set of divergences
is empty�	 then its failures are the same as its stable failures� This is captured
in the following theorem�

Theorem �� If D ��P �� � fg� then F ��P �� � SF ��P ���

This theorem is useful because it allows us to carry out analysis in the stable
failures model	 which is more e�cient	 and to establish results which remain valid
in the failures divergences model� For example	 if a process P is divergence�free	
then to check that it is deadlock�free 
i�e� that 
tr � �
P�� cannot be a failure
of P for any tr�	 it is su�cient to check this in the stable failures model 
that

tr � �
P�� cannot be a stable failure�� The model�checker FDR �For��� can carry
out divergence�freedom and deadlock�freedom checks mechanically�

��� CSP semantics for B machines

Morgan�s CSP�style semantics �Mor��� for event systems enables us to de
ne
such semantics for B machines� A machine M thus has a set of traces T ��M ��	 a
set of failures F ��M ��	 and a set of divergences D ��M ��� A sequence of operations
he�� e� � � � en i is a trace of M if it can possibly occur� This is true precisely when
it is not guaranteed to be blocked	 or in other words it is not guaranteed to
achieve false� In wp notation we write �wp
e�� e�� � � � � en � false�	 or in Abstract
Machine Notation �
�e�� e�� � � � � en �false�� 
The empty trace is treated as skip��
A sequence does not diverge if it is guaranteed to terminate 
i�e� establish true��
Thus	 a sequence is a divergence if it is not guaranteed to establish true	 i�e�
�
�e�� e�� � � � � en �true�� Finally	 given a set of events X 	 each event e � X
is associated with a guard ge � A sequence with a set of events is a failure of
M if the sequence is not guaranteed to establish the disjunction of the guards�
Thus	 
e�� e�� � � � � en �X � is a failure of M if ��e�� e�� � � � � en �


W
e�X ge�� More

details of the semantics of B machines can be found in �Tre���
Morgan does not give a stable failures semantics for action systems� We

will de
ne the stable failures SF ��M �� for a machine M in terms of its failures
divergences semantics	 as follows�

De�nition �� The stable failures of a B machine are de�ned as follows�

SF ��M �� � f
tr �X � j 
tr �X � � F ��M �� � tr 	� D ��M ��g



MACHINE i�Lift

VARIABLES i�floor

INVARIANT i�floor � NAT

INITIALISATION i�floor �� �

OPERATIONS

i�inc	nn
 �

PRE nn � NAT�

THEN i�floor �� i�floor � nn

END


i�dec �

PRE i�floor � �

THEN i�floor �� i�floor � �

END


bb ��� i�isZero �

IF i�floor � �

THEN bb �� TRUE

ELSE bb �� FALSE

END

END

i LiftCtrl �

i up	y � i inc
y � i LiftCtrl

� i down	y � i DOWN �y�

� i ground � i LOWER

i DOWN �n� �

if n � �

then i LiftCtrl

else i isZero	bb�

if �bb � TRUE�
then i LiftCtrl

else i dec� i DOWN �n � ��

i LOWER �

i isZero	bb�

if �bb � TRUE�
then i LiftCtrl

else i dec� i LOWER

Fig� �� A Lift machine i Lift and its controller i LiftCtrl

Observe that with this de
nition	 Theorem � also holds for B machines M �
We have a technique �Tre��	ST��b�	 based on control loop invariants	 for es�

tablishing that a combination P k M is divergence�free� In other words	 previous
results provide a means to establish that D ��P kM �� � fg� This paper is not con�
cerned with that technique� Rather we are concerned with composing together a
number of Pi kMi pairs once we have established that D ��Pi k Mi �� � fg for each
pair� Hence a number of the theorems in this paper will include an assumption
that D ��Pi k Mi �� � fg� The assumption in particular cases can be discharged
using the control loop invariant technique�

� A motivating toy example� a lift controller

As motivation for the results presented in this paper	 we consider a toy example
of a collection of lift machines described in B	 controlled by CSP controller
processes� An individual lift is given in Figure �� It describes a particular lift	
indexed by i � We will then go on to de
ne a system consisting of a collection of
such lifts�

��� Individual lifts

The Lift machine provides three operations� i inc�nn� which moves the lift up
nn �oors	 i dec which moves the lift down one �oor	 and a query operation
i isZero which indicates whether or not the lift is on the ground �oor�



i up i down i ground

i inc i dec i isZero

i LiftCtrl

i Lift

Fig� �� The controlled lift system

The CSP controller is also given in Figure �� It interacts with a user through
the events i up	 i down	 and i ground 	 and controls the lift accordingly�

� on i up�y 	 it calls i inc and moves the lift up y �oors�
� on i down�y 	 it calls i dec y times or until it reaches the ground if this is

sooner�
� on i ground 	 it is required to move the lift to the ground �oor� To do this	 it

repeatedly checks 
using i isZero� whether the lift is on the ground �oor	
and if not then it moves the lift down a �oor with i dec�

We are 
rstly interested in each controlled lift combination

i LiftSys � 
i Lift k i LiftCtrl� n fj i inc� i dec� i isZero jg

which is pictured in Figure �� We require as a minimum that this combination
is deadlock�free and divergence�free�

These properties are apparent in this simple example� Deadlock�freedom is
immediate because the B machine is always willing to engage in any event re�
quired by the controller	 and the controller itself is either waiting for an interac�
tion from its environment or else ready to call a controller operation� Divergence
could arise either 
i� from a B operation being called outside its precondition	 or

ii� from an in
nite sequence of internal events� In the case of 
i�	 the only oper�
ation with a non�trivial precondition is i dec	 and the controller is constructed
so that i dec is only ever called when the lift is not at �oor �� In the case of

ii�	 the lift will eventually reach the ground �oor and so an in
nite sequence of
calls of i dec cannot occur�

In more complex examples the properties may not be so apparent	 and it
would be useful to be able to apply analysis tools to carry out model�checking
on the combined system� However	 no tools currently exist which can analyse a
combination of B and CSP descriptions� The best we can aim for is to analyse
the descriptions separately and combine results� In particular	 for considering
properties such as deadlock and livelock we would aim to apply a tool such
as FDR �For��� to the CSP part of the description	 and deduce results about
the controlled combination� In particular	 once it has been established that the



i LiftCtrl
�f � �

i up	y � i inc
y � i LiftCtrl
�f � y�

� i down	y � i DOWN 
�f � y�

� i ground � i LOWER
�f �

i LOWER
�f � �

i isZero	bb
�

�

�

�
fbb � TRUE � f � �g �

if �bb � TRUE�
then i LiftCtrl
�f �
else i dec � i LOWER
�f � ��

i DOWN 
�f � n� �

if n � �

then i LiftCtrl
�f �

else i isZero	bb
�

�

�

�
fbb � TRUE � f � �g �

if �bb � TRUE�
then i LiftCtrl
�f �
else i dec�

i DOWN 
�f � ��n � ��

Fig� �� The controller with diverging assertions

controller does not call operations outside their precondition	 then the aim is that
all deadlocking and divergent behaviour is essentially contained in the controller
and can be identi
ed without further reference to the B machine�

It has previously been established �ST��b� that	 under appropriate condi�
tions	 the deadlock�freedom of a controller P implies the deadlock�freedom of a
controlled combination P kM � This result appears in this paper as Theorem ��

We also establish in this paper 
Theorem �� that	 under appropriate condi�
tions	 if P n E is divergence�free	 then so too is 
P kM � n E �

These two theorems are exactly what is required� We have only to check that
i LiftCtrl is deadlock�free to deduce the same for i LiftSys� And we have only
to check that i LiftCtrl n fj i inc� i dec� i isZero jg is divergence�free to deduce
this for i LiftSys� These are both checks that are easily done using FDR�

However	 the second check turns out not to be correct� The description of
i LiftCtrl n fj i inc� i dec� i isZero jg in fact contains a divergence arising from
the in
nite sequence hi ground � i isZero�false� i dec� i isZero�false� i dec� � � �i of
i LiftCtrl � It is the machine i Lift that ensures that this cannot occur � but
that machine was not included in the FDR analysis�

The problem is that some of the control �ow is dependent on the state in�
formation maintained in the B machine	 and so the useful theorems we have
available are not directly applicable� We need to include the relevant state infor�
mation in the description of the CSP controller	 and also the expectation that
the value true will be received on channel i isZero exactly when f � �� This is
included as an assertion	 as shown in Figure �� It is straightforward to show that
i LiftCtrl�
�� is an appropriate driver for i Lift 
using control loop invariant
f � �oor�� The proof that i LiftCtrl�
�� k i Lift has no divergences involves
establishing the truth of the assertion for the input bb on i isZero�

Introducing a diverging assertion means that i LiftCtrl�
�� trivially has a
divergence 
i�e� the behaviour when the assertion is not met�	 so it is not ap�
propriate to check i LiftCtrl�
�� n fj i inc� i dec� i isZero jg for divergence�
freedom� However	 in the context of i Lift we know the assertion will always be



i LiftCtrl��f � �

i up	y � i inc
y � i LiftCtrl��f � y�

� i down	y � i DOWN ��f � y�

� i ground � i LOWER��f �

i LOWER��f � �

i isZero	bb
�

�

�

�
hbb � TRUE � f � �i �

if �bb � TRUE�
then i LiftCtrl��f �
else i dec � i LOWER��f � ��

i DOWN ��f � n� �

if n � �

then i LiftCtrl��f �

else i isZero	bb
�

�

�

�
hbb � TRUE � f � �i �

if �bb � TRUE�
then i LiftCtrl��f �
else i dec�

i DOWN ��f � ��n � ��

Fig� �� The controller with blocking assertions

true	 so we may replace the diverging assertion by a blocking one	 and yield a
controller with the same behaviour in the context of i Lift � The only di�erence
is that this controller blocks rather than diverges when the assertion is false	
and since the assertion is never false in the context of i Lift 	 the resulting be�
haviour is the same� This transformation is justi
ed by Corollary �� Thus	 we
obtain a variant i LiftCtrl�
�� of the controller	 given in Figure �	 such that
i LiftCtrl�
�� k i Lift � i LiftCtrl�
�� k i Lift �

Now we have a transformation of the controller which is divergence�free when
the internal events are hidden� i LiftCtrl�
�� n fj i inc� i dec� i isZero jg is
divergence�free	 and this can be checked using FDR 
given a bound on the num�
ber of possible consecutive i up events�� So we can conclude that 
i LiftCtrl�
�� k
i Lift� n fj i inc� i dec� i isZero jg is divergence�free�

Now Corollary � also allows the assertions of i LiftCtrl�
�� to be dropped
completely	 resulting in a controller whose behaviour does not depend on the
value of the parameter f at all	 and which is therefore equivalent to i LiftCtrl �
This transformation is discussed in more detail in �ST��a�� We have therefore
now established divergence�freedom of the original combination 
i LiftCtrl k
i Lift� n fj i inc� i dec� i isZero jg�

To sum up� we identi
ed two new controllers which are equivalent in the
presence of i Lift to the original controller i LiftCtrl 	 and which are each used
in a di�erent part of the proof�

i LiftCtrl�
�� k i Lift � i LiftCtrl�
�� k i Lift � i LiftCtrl k i Lift

� The combination i LiftCtrl�
�� k i Lift can be shown to be divergence�free
using techniques from �ST��b��

� i LiftCtrl�
�� n fj i inc� i dec� i isZero jg is divergence�free	 and so

i LiftCtrl�
�� k i Lift� n fj i inc� i dec� i isZero jg is divergence�free�

� And i LiftCtrl�
�� k i Lift is equivalent to the original i LiftCtrl k i Lift �

These results together establish the required result� that the original combination

i LiftCtrl k i Lift� n fj i inc� i dec� i isZero jg is divergence�free� The state



� LiftCtrl

� Lift


 LiftCtrl


 Lift

� LiftCtrl

� Lift

� LiftCtrl

� Lift

reqbottom

� up
� down
� ground

� inc
� dec

� isZero
send

reset

DispatchCtrl

Dispatch

Fig� �� The complete system Lifts

information was introduced into the controller purely to enable the veri
cation
to take place	 and can be removed once the result has been established�

We also deduce that 
i LiftCtrl k i Lift� n fj i inc� i dec� i isZero jg is
deadlock�free� This follows from deadlock�freedom of i LiftCtrl k i Lift �

��� A collection of lifts

We will now combine the lifts into a single system together with a Dispatch and
DispatchCtrl component which manages requests for lifts from buttons on the
various �oors� When a request for a lift is made from a particular �oor	 only one
of the lifts needs to be sent� An example architecture made up of four lifts is
pictured in Figure ��

The Dispatch machine contains some algorithm for deciding which lift should
be sent to a particular �oor� It has an operation ii � nn� dd �� send
	 �� On input
of the �oor 	 to send a lift to	 it provides as output the lift ii to be sent	 the
number of �oors nn and the direction dd that lift ii will need to travel 
as
computed by Dispatch�� Dispatch has another operation reset 	 which is called
when all lifts return to the ground �oor� The particular details of Dispatch are
not relevant to this example and will not be given here�

The DispatchCtrl controller accepts requests along channel req � an input
req�x is a request for a lift to go to �oor x � It makes use of the Dispatch machine
to decide which lift to allocate	 and then sends the appropriate instruction to
the relevant lift� The controller can also accept an instruction bottom to return
all lifts to the ground �oor� It is de
ned as follows�

DispatchCtrl � req�x � send �x�i�n�d � if d � ascend
then i up�n � DispatchCtrl
else i down�n � DispatchCtrl

� bottom � � ground � � ground � � ground

� � ground � reset � DispatchCtrl



Our overall system is then composed of the controlled lift components Lifts �

k
i�����


i LiftCtrl k i Lift� interacting with the DispatchCtrl k Dispatch com�

ponent	 and with all events apart from req and bottom internal�


k
i�����


i LiftCtrl k i Lift� k 
DispatchCtrl k Dispatch�� n Int

Int �
S
i
fj i inc� i dec� i isZero� i up� i down� i groundg 
 fj send � reset jg

We will see in Section � that this system is deadlock�free and divergence�free�

� Deadlock�freedom

An essential requirement for controlled components is deadlock�freedom� This is
easily checked in FDR	 but only for processes that are expressed in CSP� Thus	
we aim to establish a theorem that allows the deadlock�freedom of P k M to be
deduced from deadlock�freedom of P 
which can then be checked using FDR��

In general	 parallel composition does not preserve deadlock�freedom� Fortu�
nately	 in the case of CSP controllers and B machines	 we are able to identify
conditions which ensure that the processes involved interact on their common
channels in a particular way	 ensuring that introducing a B machine cannot
introduce any new deadlocks� In other words	 any deadlocks possible for the
controlled component P k M must already have been possible in P �

Open on possible inputs The required property of the B machine is that
it should always be able to accept any input for any operation	 and be able to
provide some output� The need for this property is precisely why only machines
with non�blocking operations are permitted� If a machine meets this property
then we will say it is open on the particular operations and inputs�

In CSP terms	 this is de
ned formally for CSP processes Q as follows�

De�nition �� A process Q is open on a set of partial events PE if� given any

tr �X � � SF ��Q �� and e � PE� there is some w such that e�w 	� X �

This will apply to B machines as follows� given any machine operation w ��
e
v�	 we would expect the machine to be open on any partial event of the form
e�v�	 which corresponds to passing the input v� to operation e� In other words	
there should be some output w� which is made available by the machine 
and
hence does not appear in the refusal set X ��

The set of possible inputs for a machine will be all those partial events which
correspond to operations being called with some input� The events are partial
because they do not include the output values�

De�nition �� Given a B machine M with operations wi �� ei
vi �� the set
pi
M � of possible inputs for M is de�ned by

pi
M � �
S
i
fei �vi j vi � Tin
ei �g



Example 
� The set of partial inputs for the machine i Lift is given in terms of
the three operations as follows�

pi
i Lift� � fj i inc�i j i �Zjg 
 fj i dec jg 
 fj i isZero jg

Observe that in the cases of i inc and i dec there are no outputs	 so the partial
events are in fact complete events� Being open on these events means that they
cannot be refused 
since their output 
eld is empty�� There are two completions
of the partial event i isZero� i isZero�true and i isZero�false� i Lift being open
on this partial event means that at any stage at least one of these completions
cannot be refused by i Lift �

The key property of non�blocking machines is that they will always be open
on their possible inputs�

Lemma �� Any �non�blocking� B machine M is open on pi
M ��

This states in CSP semantics terms that any operation call with any input should
always produce some result�

Non�discriminating controllers The condition on a controller P is that	
whenever it calls an operation of the controlled B machine M 	 it should be able
to accept any output provided by M � We call this property non�discriminating	
and it can be expressed formally in CSP terms with the following de
nition�

De�nition �� A CSP process P is non�discriminating on a set of partial events
PE if� for any failure 
tr �X � � SF ��P �� and subset CV � PE� we have that


� c�v � CV 
 �w 
 c�v �w � X �� 
tr �X 
 fj CV jg� � SF ��P ��

This de
nition states that if any event c�v �w can be refused 
i�e� appears in
the refusal set X �	 then all the inputs on channel c�v 
i�e� outputs from the B
machine� could be refused� thus the refusal X can be augmented with fj c�v jg�

Example 
� The control process i LiftCtrl is non�discriminating on i isZero� at
any stage	 i LiftCtrl can either refuse all of fj i isZero jg	 or else none of it� In
terms of the de
nition	 whenever some event from fi isZero�true� i isZero�falseg
can be refused	 then all can be refused�

Observe that i LiftCtrl is also non�discriminating on fi inc�i j i �Zg and on
i dec� In fact a process will trivially be non�discriminating on complete events�

The approach is restricted to non�blocking B machines� In other words	 oper�
ations w �� e
v� must always be enabled 
though they might be called outside
their preconditions	 which leads to divergence� and on any input they must pro�
vide some output�

Controllers which do not include blocking assertions on the control channels
are able to accept any output from the associated B machine whenever they call
an operation with any particular inputs� Thus	 they will be non�discriminating
on the possible inputs to the machine� This is expressed by the following lemma�

Lemma �� If P is a controller for machine M with no blocking assertions on
any channels of M � then P is non�discriminating on the set pi
M � of M �s pos�
sible inputs�

Observe that this lemma is illustrated by i LiftCtrl in Example � above�



Establishing Deadlock�freedom We now have ingredients which are su��
cient to deduce deadlock�freedom of P k Q from deadlock�freedom of P � The
idea is that the interface between P and Q is de
ned by a set of partial events
PE � P should be non�discriminating on these partial events	 and Q should be
open on them� We can show that if P k Q can deadlock	 then so can P �

If P k Q does have a deadlock state	 then all events can be simultaneously
refused in that state� For any partial event e	 Q is open on e so Q cannot refuse
all of fj e jg� Hence P must be refusing some event in fj e jg	 and so because P
is non�discriminating	 P can refuse all of fj e jg� Thus	 we 
nd that all events in
the interface can be refused by P in this state	 and P cannot perform any other
events either� Hence P is in a deadlocked state�

Consider this reasoning in the context of a controlled component� Consider
a state of P kM � If P in this state is not deadlocked	 then either

�� P is ready to perform an event outside �
M �� In this case	 M cannot prevent
that event	 and the combination P k M is ready to perform the event	 and
hence is not deadlocked� or

�� P is ready to perform an interaction with M � In this case	 it is an operation
call c with some input v � P is ready to accept any output from this operation
call	 since it is non�discriminating on c�v � M is ready to provide an output
w in response to c�v 	 since it is open on c�v � Hence	 the combination P kM
is ready to perform c�v �w 	 and so is not in a deadlocked state�

The lemma that this reasoning establishes is the following�

Lemma �� If


� P is non�discriminating on a set of partial events PE� and

� Q is open on PE� and
�� �
Q� � fj PE jg�

then� if P is deadlock�free in the stable failures model� then so too is P k Q

For a particular controlled component P k M 	 we already have the conditions
for Lemma �� P is non�discriminating on pi
M � 
from Lemma ��� M is open on
pi
M � 
from Lemma ��� and �
M � � fj pi
M � jg�

Finally	 we obtain the following theorem for controlled components�

Theorem �� If P is a CSP controller for M with no blocking assertions on any
channels of M � and P is deadlock�free in the stable failures model� then P k M
is deadlock�free in the stable failures model�

This theorem is exactly what is required to establish deadlock�freedom of P kM
from deadlock�freedom of P � In fact a direct proof of this theorem in terms of the
CSP semantics has previously been presented	 in �ST��b�� However	 we 
nd the
identi
cation of the properties non�discriminating and open yields more under�
standing as to why the theorem works and allows an easier proof of Theorem �
and others�



Example �� For example	 consider the combination i LiftCtrl k i Lift 	 in a
state after some trace tr 	 in which fi isZero�true� i isZero�falseg is refused� We
know that i Lift is open on fj i isZero jg	 so it cannot refuse the whole set
fi isZero�true� i isZero�falseg� Since the parallel combination does refuse that
whole set	 it must be that i LiftCtrl is refusing at least one of i isZero�true	
i isZero�false� But i LiftCtrl is non�discriminating on i isZero	 so this means
that it can itself refuse the whole set fj i isZero jg�

The same reasoning applies to all partial events in the interface between
i LiftCtrl and i Lift � Thus	 if i LiftCtrl k i Lift could reach a deadlock state	
then all events in the interface would be refused by i LiftCtrl k i Lift 	 and so
they could also be refused purely by i LiftCtrl � Thus	 i LiftCtrl would also have
a deadlock state�

As observed previously	 i LiftCtrl is deadlock�free� Hence Theorem � allows
us to deduce that i LiftCtrl k i Lift is deadlock�free�

� Restricting events to prevent divergence

The use of abstraction is essential in the compositional development of large sys�
tems� We will therefore generally need to hide control channels within controlled
components�

Since hiding has the potential to introduce divergence	 we need to be able to
establish when this does not occur� In particular	 it would be useful to be able
to check divergence�freedom of a controller P n C using FDR	 and to be able to
deduce divergence�freedom of the controlled component 
P kM � n C �

The following theorem on CSP processes P and Q gives such a condition�

Theorem �� If P k Q is divergence�free� and C � �
P�� and P n C is
divergence�free� then 
P k Q� n C is divergence�free�

This is immediately applicable to controlled components	 since C � �
P� as
a consequence of our architecture� Thus	 divergence�freedom of 
P k M � n C
follows directly from divergence�freedom of P n C �

However	 in practice it will often be the case that P n C turns out not to be
divergence�free	 even if 
P k M � n C is� For instance	 in the lift example we found
that i LiftCtrl n fj inc� dec� isZero jg was not divergence�free	 and instead we
had to transform the controller description to i LiftCtrl�
�� in order to obtain
a controller such that i LiftCtrl�
�� n fj inc� dec� isZero jg is divergence�free� So
it is necessary to identify theorems which justify such transformations�

Our approach is to identify behaviours of controller P which cannot occur in
the context of the machine M under control� We then aim to 
nd P � such that

�� P � is the same as P except 
possibly� on the behaviours that have been
identi
ed	 and

�� P � n C is divergence�free

Thus	 P � k M will be the same as P k M 	 which by assumption is divergence�
free� Theorem � applied to P � yields that 
P � k M � n C is divergence�free	 and
hence 
P kM � n C is divergence�free�



This is the approach that was taken in the lift example� The relevant be�
haviour that cannot occur in the context of i Lift is the output of false from
isZero when the lift is at the ground �oor� This behaviour is blocked in i LiftCtrl�
���
However	 i LiftCtrl�
�� is the same as i LiftCtrl for all behaviours that are pos�
sible in parallel with i Lift �

The way we identify traces that cannot occur is to require divergence when�
ever they do occur	 and then look for divergences� If we are concerned with a set
of traces T � A�	 then we can express this by de
ning a new process DIVA
T �
which behaves as RUNA except that it diverges on any trace in T �

F ��DIVA
T ��� � f
tr � fg� j tr � A�g 
 f
tr a tr ��X � j tr � T � tr � � A� � X � Ag

D ��DIVA
T ��� � ftr a tr � j tr � T � tr � � A�g

Observe that DIVA
fg� � RUNA and DIVA
A�� � DIVA�
The process DIVA
T � can then be used to mask behaviour in a process P �

The process P k DIVA
T � behaves exactly as P 	 except that whenever a trace
in T is performed then it diverges� Thus	 if P k DIVA
T � � P � k DIVA
T �	
then P and P � have the same behaviour except possibly with regard to traces
in T 	 which are masked by the introduction of divergence�

The following theorem allows a process P to be replaced by an alternative
process P � in the context of another process Q � In particular	 if P does not
diverge in the context of Q 
i�e� P k Q is divergence�free�	 and P � is the same
as P except on divergent traces of P 	 then P and P � have the same executions
when executed in parallel with Q 
since none of P �s divergent traces will be
performed��

Theorem �� If P� P � and Q are such that


� P k Q is divergence�free�

� P �FD P � k DIV

��P�
D ��P ���
�� �
P� � �
P ��

then P k Q � P � k Q�

This states that if P � is di�erent to P only with respect to where P diverges	
and P k Q does not diverge	 then P and P � behave the same in the context of
Q � This follows because if P k Q does not diverge	 then none of the traces of P
which lead to divergence are possible when executing in parallel with Q � Since
P � is exactly the same as P except for these traces	 and Q prevents such traces
from occurring	 it follows that P � k Q is the same as P k Q �

Example �� As an example to illustrate Theorem �	 consider the following pro�
cesses� P and P � have alphabet A � fa� b� cg	 and Q has alphabet fa� bg�

P � 
a � 
b � DIVA � a � c � P��

P � � 
a � 
b � c � P �
� a � c � P ���

Q � 
a � a � Q� � 
b � STOP�



� Firstly	 we see that P k Q can only ever perform a and c events	 and is
deadlock�free� In particular	 the process Q prevents P from performing the
b event	 the only event that can lead to divergence	 since there is no point
at which P and Q can agree to perform b�

� The behaviour of P � after b occurs is di�erent to that of P 
which is diver�
gent�	 but if b does not occur then P and P � behave the same� Thus	 P and
P � are the same except on the divergences of P �

� Finally	 note that P and P � have the same alphabet�

Thus	 we can conclude that P k Q � P � k Q �

The reason this result is useful is because it supports the introduction and
manipulation of assertions on the control channels� If we introduce a divergent
assertion on a control channel between P and M 	 and we then establish that
P k M is divergence�free 
using CLI techniques�	 then we can alter the behaviour
of P when the assertion is false 
in which case P diverges� and obtain a related
controller P � which matches P outside P �s divergences	 and for which P k M �
P � k M � The aim is to obtain a controller P � in this way for which P � n C is
divergence�free�

The next lemma lists some ways in which diverging assertions within a con�
troller can be transformed�

Lemma �� If a controller P � is obtained from controller P by replacing clauses
of the form e�v�xfE 
x �g � R
x � with one of�


� e�v�xfE �
x �g � R
x � where � x �E 
x � � E �
x �

� e�v�x � if E 
x � then R
x � else Q
x �
�� e�v�x � R
x �
�� e�v�x hE 
x �i � R
x �

then P �FD P � k DIV
��P�
D ��P ���

Thus	 we obtain the following corollary for controlled components�

Corollary �� If P kM is divergence�free� then behaviour in P following an in�
put which fails a diverging assertion can be changed in accordance with Lemma �
without a	ecting the behaviour of the parallel combination�

This means that diverging assertions in P 	 once they have been discharged in
a context M 	 can be replaced with blocking assertions	 or else removed com�
pletely� This is precisely the justi
cation for the transformation of i LiftCtrl�
i�
to i LiftCtrl�
i�� in the context of i Lift 	 i LiftCtrl�
�� does not diverge�

� Parallel combinations of controlled components

All the results of the previous sections have been presented as applying to a
single CSP controller process P in parallel with a single B machineM � However	
systems we are generally concerned with 
such as the combination of lifts� have

the form k
i

Pi k Mi�	 as illustrated in Figure �� Many of the results we have

obtained for a single controlled component can be lifted to combinations of
components	 and we will consider some of these in this section�



Divergence�freedom Firstly	 we consider divergence�freedom� It is straightfor�
ward to establish divergence�freedom of a combined system	 using the following
theorem from �ST��b��

Theorem 	� If Pi k Mi are divergence�free for each i� then k
i

Pi k Mi� is

divergence�free�

This follows immediately from the semantics for parallel composition	 which
preserves divergence�freedom� Thus	 we need only establish divergence�freedom
for the component pairs	 and the result follows�

Example �� In the parallel lift system	 since each of the controlled lift compo�
nents is divergence�free	 and since we are given that the controlled dispatcher
component is divergence�free	 it follows that the overall parallel combination of
all the components of the multiple lift system is divergence�free�

Establishing deadlock�freedom Associativity and commutativity of the par�
allel operator means that we can group the controller processes together and the
machines together	 rearranging the parallel composition as follows�

k
i

Pi kMi� � 
k

i
Pi � k 
k

i
Mi �

Now we can consider 
k
i
Pi � as a CSP process	 and 
k

i
Mi� as another CSP pro�

cess� and we are concerned with the parallel combination of these two processes�
The reason for grouping the components in this way is that the properties

�non�discriminating� and �open� are preserved by parallel composition in CSP�
We can thus obtain the following two lemmas�

Lemma 	� If Pi is a collection of controllers for machines Mi respectively�
where each Pi has no blocking assertions on any channels of its associated Mi �
then k

i
Pi is non�discriminating on the set

S
i

pi
Mi ���

Lemma 
� Any collection of �non�blocking� B machines Mi has that k
i
Mi is

open on
S
i

pi
Mi ���

Lemma � states that if each machine is able to engage in any of its operations	
then the parallel combination of all the machines is able to engage in any of the
operations of any of its machines�

These two lemmas mean that the conditions for Lemma � are met for con�
trollers with no blocking assertions�

�� k
i
Pi is non�discriminating on the set

S
i

pi
Mi ���

�� k
i
Mi is open on

S
i

pi
Mi ���

�� �
k
i
Mi � � fj

S
i

pi
Mi �� jg�

This means that Lemma � is directly applicable to a collection of parallel con�
trolled components	 in which deadlock�freedom of the overall parallel combina�
tion follows from deadlock�freedom of the combination of controllers�



P

Q

� LiftCtrl

� Lift


 LiftCtrl


 Lift

� LiftCtrl

� Lift

� LiftCtrl

� Lift

reqbottom

DispatchCtrl

Dispatch

Fig� 	� Splitting the system into P and Q to verify divergence�freedom

Theorem 
� Given a collection of CSP controllers Pi and corresponding con�
trolled machines Mi � such that no controller has any blocking assertions on the
control channels� then if k

i
Pi is deadlock�free in the stable failures model� then

so too is k
i

Pi kMi ��

In the example lift system	 we have therefore only to check that


k
i�����

i LiftCtrl� k DispatchCtrl

is deadlock�free 
which is easily shown� to deduce this for the complete system�

Divergence�freedomof Lift System We are really concerned with divergence�
freedom of


k
i�����


i LiftCtrl k i Lift� k 
DispatchCtrl k Dispatch�� n Int

Theorem � is the appropriate theorem to apply here� We need to split the
system into P and Q such that P k Q is divergence�free	 and P n C is divergence�
free� The natural approach would take P as the combination of CSP controllers	
andQ as the combination of B machines� veri
cation could indeed be established
by introducing assertions into the controllers along the lines of Section ��

However	 we have already established the individual lifts are divergence�free	
so we can re�use this result by splitting the system di�erently	 as pictured in
Figure �� P is DispatchCtrl 	 Q is the rest of the system	 and C is the interface
between P and Q �

P � DispatchCtrl

Q � k
i
i LiftSys k Dispatch

C �
�

i

fj i up� i down� i ground jg 
 fj send � reset jg



We can check the conditions for Theorem ��

�� Each i LiftSys is divergence�free 
as established earlier�	 and alsoDispatchCtrl k

Dispatch is divergence�free	 so the parallel combinationP k Q � k
i
i LiftSys k

Dispatch k DispatchCtrl is divergence�free 
since divergence�freedom is pre�
served by parallel composition��

�� C � �
P�
�� P n C is divergence�free� 
This is easily checked with FDR��

Thus Lifts � 
P k Q� n C is divergence�free�

	 Discussion

This paper has been concerned with providing the CSP underpinnings for devel�
oping controlled components consisting of B machines controlled by CSP con�
trollers under a particular architecture� The work builds on the control loop
invariant method for verifying individual controlled components in the context
of the B Method	 and develops results for combining such veri
ed components�

All of the results presented in this paper have been developed using the CSP
semantics of all the component processes� The emphasis has been on obtaining
compositional results which enable existing CSP veri
cation methods and tools
to apply to our combined systems� These results enable a particular strategy
for veri
cation� transform system descriptions to equivalent forms which are
amenable to CSP checking� In the simplest case	 if the combination P k M is
equivalent to P � kM 	 and properties of P � k M can be established by analysing
P � 
with CSP tools�	 then those same properties can be deduced for P kM � So
our approach is to transform a controller P to a process P � which behaves the
same way in the context of M �

Transforming system descriptions to enable pure CSP analysis may involve
the introduction of state information within the CSP controller descriptions	 so
that the behaviour in the context of the underlying B machine is not a�ected�
In this paper we have illustrated the use of this technique�

Ongoing work �ST��a� has obtained further results for this framework� Firstly	
it is often the case that controlled components are only correct in the context of
the rest of the system� In this situation we will need to introduce assertions on the
channels between CSP controllers	 in order to establish divergence�freedom of the
individual controlled components� Treating assertions as blocking or diverging
in particular cases is a delicate issue and depends on the particular veri
cation
under consideration� We have developed theorems �ST��a� which justify the use
of particular kinds of assertions� Secondly	 we have results 
whose proofs use
the notions of non�discriminating and open� concerning re
nement in the stable
failures model� if SPEC v P n �
M � then SPEC v 
P k M � n �
M � under the
appropriate conditions� This enables speci
ed properties to be veri
ed of com�
bined systems� These results have been applied to a Bounded Retransmission
Protocol �EST��� for bu�er�style properties	 and in the Bank case study�TSB����



There are several other approaches to combining a process�style controller
with a state�based system description 
e�g� �But��	FL��	WC��	SD����� The ap�
proach closest to ours is Butler�s csp�B tool �But���	 which allows a CSP process
to be conjoined to a B machine in a way which corresponds to a controller for an
underlying machine� However	 none of the other approaches exploit the semantic
models for CSP in the way presented here� The ability to develop theory and tap
into existing tool support on both the concurrency side and the state�based side
is an important driver of the approach presented in this paper	 and originally
motivated the choices of CSP and B as the methods we chose to integrate�

Acknowledgements Thanks are due to Neil Evans	 Susan Stepney	 Fiona Po�
lack and R egine Laleau for discussions on this work	 and also to Neil for com�
ments on drafts of this paper�

References

�But��� M� Butler� csp
B� A practical approach to combining CSP and B� Formal

Aspects of Computing� �
� 
����
�EST��� N� Evans� S� A� Schneider� and H� E� Treharne� Investigating a �le transmis�

sion protocol using CSP and B� In proceedings of ST�EVE workshop� 
����
�FL��� M� Frappier and R� Laleau� Proving event ordering properties for information

systems� In ZB����� 
����
�For��� Formal Systems �Europe� Ltd� Failures�Divergences Re�nement	 FDR� Man�

ual� �����
�Mor��� C� C� Morgan� Of wp and CSP� In W�H�J� Feijen� A� J� M� van Gesteren�

D� Gries� and J� Misra� editors� Beauty is our Business	 a birthday salute to

Edsger J� Dijkstra� Springer�Verlag� �����
�Ros��� A� W� Roscoe� The Theory and Practice of Concurrency� Prentice�Hall� �����
�Sca��� B� Scattergood� The Semantics and Implementation of Machine�Readable CSP�

D� Phil thesis� Oxford University� �����
�Sch��� S�A� Schneider� Concurrent and Real�time Systems	 The CSP approach� Wiley�

�����
�SD��� G� Smith and J� Derrick� Speci�cation� re�nement and veri�cation of concur�

rent systems � an integration of Object�Z and CSP� Formal Methods in System

Design� ������ 
����
�ST�
a� S� Schneider and H� Treharne� CSP theorems for communicating B machines�

Technical Report CSD�TR��
���� Royal Holloway� University of London� 
��
�
�ST�
b� S�A� Schneider and H�E� Treharne� Communicating B machines� In ZB�����

volume LNCS 

�
� 
��
�
�Tre��� H� E� Treharne� Combining control executives and software speci�cations� PhD

thesis� Royal Holloway� University of London� 
����
�TSB��� H�E� Treharne� S�A� Schneider� and M� Bramble� Combining speci�cations

using communication� In ZB����� 
����
�WC��� J� C� P� Woodcock and A� L� C� Cavalcanti� A concurrent language for re�ne�

ment� In 
th Irish Workshop on Formal Methods� 
����


