
International Journal of Information Security manuscript No.
(will be inserted by the editor)

Rob Delicata · Steve Schneider

An algebraic approach to the verification of a class of
Diffie-Hellman protocols

Abstract We present a framework for reasoning about se-
crecy in a class of Diffie-Hellman protocols. The technique,
which shares a conceptual origin with the idea of a rank
function, uses the notion of a message-template to deter-
mine whether a given value is generable by an intruder in
a protocol model. Traditionally, the rich algebraic structure
of Diffie-Hellman messages has made it difficult to reason
about such protocols using formal, rather than complexity-
theoretic, techniques. We describe the approach in the con-
text of the MTI protocols, and derive conditions under which
each protocol in the suite can be considered secure.

Keywords Protocol Verification · Diffie-Hellman

1 Introduction

Formal protocol analysis techniques have a simplicity which
is due, in part, to the high level of abstraction at which they
operate. Such abstractions are justified since any attack dis-
covered at the abstract level will tend to be preserved in a
more concrete model. In general, however, failure to dis-
cover an attack does not imply correctness, and in seeking
to establish correctness we must be mindful of the assump-
tions on which our abstractions are based.

Protocols based on the Diffie-Hellman scheme [11] present
an interesting verification challenge since, in this context, we
cannot assume such an abstract view of cryptography. Cer-
tain algebraic properties (such as the homomorphism of ex-
ponentiation in (gx)y = (gy)x) must be represented for the
protocol to reach its functional goal, and other properties
(such as the cancellation of multiplicative inverses) must
also be considered if we wish to prove a meaningful security
result. As a consequence, such protocols have tended to be
evaluated in complexity-theoretic models (see [5], for exam-
ple) which aim to reduce the correctness of the protocol to
some well-defined hard problem, such as the computation of

Department of Computing, University of Surrey, Guildford, Surrey,
GU2 7XH, UK.
Tel.: +44 (0)1483 300 800
E-mail: {R.Delicata, S.Schneider}@surrey.ac.uk

discrete logarithms in a finite field. The resulting proofs tend
to be difficult to conduct and evaluate, and a small change in
the protocol will often require an entirely new proof to be
constructed.

With some exceptions [16,19,18,1] formal techniques
have been slow in rising to the challenge of Diffie-Hellman.
This paper presents a theorem-proving approach to the ver-
ification of a class of Diffie-Hellman protocols.1 Although
our approach is quite general we begin by presenting it in the
context of the MTI A(0) protocol of Matsumoto, Takashima
and Imai [15]. This protocol is chosen for the simplicity of
its messages and non-standard use of Diffie-Hellman (in par-
ticular, the computation of a shared key as gx · gy = gx+y).
The design of the MTI protocols is such that we are able to
model them at a very abstract level. The class A protocols
are described in Section 2. Our model revolves around the
idea of a message-template which, suitably instantiated, can
represent any value that an attacker can deduce (under a de-
fined set of capabilities). A particular value remains secret
if it cannot be realised via any instantiation of the message-
template. This model and its associated definition of secrecy
is described in Section 3, applied to the MTI A(0) protocol
in Section 4, and the remaining protocols in Section 5. Al-
though we do not describe it in such language, our approach
shares a conceptual origin with the notion of a rank func-
tion [20], and is informed by the approach of Pereira and
Quisquater [19]; we explore these relationships, and con-
clude, in Section 6.

2 The MTI protocols

Three infinite classes of authenticated key agreement pro-
tocols fall under the banner of MTI [15]. All of the MTI
protocols are amenable to analysis in our framework but, in
the first instance, we focus on one particular protocol, A(0).
The protocol combines long-term and ephemeral key con-
tributions to provide authentication in the Diffie-Hellman
scheme. A summary of notation, following [4], is given in

1 A preliminary version of this work appeared as [9].

2 Rob Delicata, Steve Schneider

rA,rB,rC Random integers, chosen by A, B and C respectively
tA,tB Ephemeral public-keys, tA = grA , tB = grB

xA,xB,xC Private long-term keys of A, B and C respectively
yA,yB Public keys of A and B: yA = gxA , yB = gxB

ZAB The shared secret between A and B
x ∈R X An element x chosen at random from the set X

Fig. 1 Protocol notation

Figure 1. In protocol A(0) (Figure 2) principal A (who wishes
to establish a shared-secret with B) generates a long-term
secret, xA, and publishes the corresponding public-key yA =
gxA . B does the same with xB and yB. A randomly chooses
rA, computes zA = grA and sends it to B. In response, B ran-
domly chooses rB, computes zB = grB and sends it to A. B
then computes:

ZAB = zxB
A yrB

A = (grA)xB · (gxA)rB = grAxB+xArB

and A computes:

ZAB = grBxA+xBrA

The protocol aims to convince each principal that no one,
aside from the other protocol participant, can learn the shared-
secret ZAB. This property is often termed implicit key authen-
tication:

Definition 21 Let P be a 2-party key agreement protocol
involving principals A and B, and let k be a secret jointly
generated as a result of P. We say that P provides implicit
key authentication if A and B are assured that no princi-
pal C /∈ {A,B} can learn k (unless aided by a dishonest
D ∈ {A,B}).

In line with previous work [19,8] we formalise implicit key
authentication as the inability of an attacker to learn a shared
secret.

All of the MTI protocols involve the exchange of two
messages, zA and zB, each of which is computed within the
principal and not as a function of a previously received mes-
sage. (Contrast this with protocols like Cliques [3], where
a principal B may receive an input m from A, apply some
function to m and send the result on to C.) We will see in the
next section that this fact enables us to model protocols at a
very abstract level.

3 A model for Diffie-Hellman protocols

In this section we present a model for Diffie-Hellman pro-
tocols based around the idea of a message-template which
defines the general form of any message generable by an at-
tacker in a given protocol.

We begin by noting that transmitted messages are el-
ements of some group G in which the Decisional Diffie-
Hellman problem is believed to be hard. A generator g of
G is agreed by all principals and there exists an identity el-
ement 1 such that 1 · x = 1, for all x ∈ G. We assume that
elements of G can be expressed as g raised to the power of

A B

rA ∈R Zq

zA = grA
zA−−−−→ rB ∈R Zq

zB = grB

ZAB = zxA
B yrA

B

zB←−−−− ZAB = zxB
A yrB

A

Fig. 2 MTI A(0) protocol

a sum of products of random numbers. This assumption per-
mits, for example, gxy+z, where x, y and z are random num-
bers, but excludes values such as g(gx) since the exponent is
itself a group element. The users of the system therefore ma-
nipulate two types of element, (i) random exponents, and (ii)
powers of g, and we assume that only the latter will be sent
on the network:

Assumption 31 All values passing on the network are pow-
ers of g where the exponent can be expressed as a sum of
products of integers, and computation takes place in a group
in which the Diffie-Hellman problem is hard.

In the protocol, principals make use of public-key cer-
tificates, such as gxA , but we do not specify how such cer-
tificates are registered and obtained. Instead, we assume the
following:

Assumption 32 There exists a certification authority, or some
other means by which a principal A can obtain B’s public-
key certificate and be sure that B knows the corresponding
private-key.

Finally, we divide the principals into disjoint sets of hon-
est and dishonest agents, such that:

Assumption 33 Honest principals do not deviate from the
protocol and do not (knowingly) divulge their secret keys or
any previously established session-keys.

In fact, we assume the presence of a single dishonest princi-
pal: the attacker.

3.1 The attacker

We divide the users of the system into a set of honest prin-
cipals, {A,B}, who will always adhere to the protocol, and a
malevolent agent, C, whose goal is to subvert the protocol.

Some elements of (i) and (ii) (from above) will be known
initially to the attacker (such as random numbers he has
chosen himself, and their corresponding powers), and some
elements of (ii) will become known to the attacker during
the course of the protocol. The design of the MTI proto-
cols means that an active attacker cannot influence any of
the values sent by honest participants, since the functions
which produce these values are not dependent on any exter-
nal input (they may, however, be influenced by the perceived
sender of the incoming message). This is important, since it
is then sufficient to assume that the attacker knows these val-
ues from the start.

An algebraic approach to the verification of a class of Diffie-Hellman protocols 3

Following [19], we divide the attacker’s initial knowl-
edge into a set E of exponents and a set P of known powers
of g, where x ∈ P indicates knowledge of gx but not of x (un-
less x∈E). We then define the computations that the attacker
can perform:

Definition 31 (attacker capabilities) Given a set P of ini-
tially known powers of g and a set E of initially known ex-
ponents, the attacker can grow P based on the following op-
erations:

1. given m1 ∈ P and m2 ∈ P add m1 +m2 to P
2. given m ∈ P and n ∈ E add mn, m(n−1) to P
3. given m ∈ P add −m to P

In other words, we allow the attacker to (1) compute gm1 ·
gm1 = gm1+m2 given knowledge of gm1 and gm2 , (2) com-
pute the exponentiations (gm)n, (gm)n−1

given knowledge of
gm and n, and (3) compute the inverse 1

gm = g−m given gm.
Moreover, these capabilities can be combined:

Example 1 Suppose that P = {1,rA} and E = {rC}. The at-
tacker can deduce (i) −rA ∈ P by rule 3 from rA, (ii) 1rC ∈ P
by rule 2 and −rA +1rC ∈ P by rule 1 from (i) and (ii), rep-
resenting the computation of grC−rA .

Crucially, the attacker is not able to use m1 ∈ P and m2 ∈
P to deduce m1m2.

�

In this model, the attacker’s entire knowledge can be defined
as the closure of P under the deductions of Definition 31 and
set E. In any useful protocol, E and P will initially be non-
empty, and the resulting knowledge sets will be infinite. For
this reason, it will be infeasible to enumerate these sets by
growing P via successive application of rules 1–3.

3.2 System definition

An examination of the sorts of values that can be deduced
by an attacker leads to the following observation: a genera-
ble value can be written as some number of elements of P
multiplied by some product of (possibly inverted) elements
from E. For instance, the value derived in Example 1 can be
written as −1(rA)(r0

C)+ 1(1)(r1
C) (noting the difference be-

tween the group identity 1 and the integer 1). In fact, we can
go further by defining a polynomial over the variables of E
and P which represents any value generable by the attacker
using rules 1–3, above.

Definition 32 Let F be a finite family of functions that map
elements of E to integer powers: F ⊆ f in E → Z.

Given E = {xC}, for example, we may define F = {{xC �→
−1}}.

Definition 33 Let h be a higher-order function which, for a
member of F, maps elements of P to integers: h : F → (P →
Z).

As an example, given P = {rA} and F = {{xC �→ −1}}, we
might choose to define h({xC �→ −1}) = {rA �→ 1}.

Definition 34 (message-template) Fix some E and P. Then:

v(F,h) = ∑
f∈F

(
∑
p∈P

hf ,p · p

)(
∏
e∈E

e fe

)

We call v the message-template for a system defined by E
and P. Intuition is little help here, so consider a simple ex-
ample:

Example 2 Given the system defined by P = {rA} and E =
{xC}, consider how the value g−rAx−1

C +5rAxC can be expressed.
Our goal is to find F and h such that:

v(F,h) = −rAx−1
C +5rAxC

We begin by rewriting the right-hand side of the equation to
include all multipliers of P elements and powers of E ele-
ments:

v(F,h) = (−1 · rA) · (x−1
C)+(5 · rA) · (x1

C)

The term is a linear combination of two components, each
of which makes reference to a different power of xC (−1 and
1). This guides us to a definition of F , as:

F = {{xC �→ −1},{xC �→ 1}}
In the first component of the linear combination, the −1st
power of xC is multiplied by −1 · rA, leading us to:

h({xC �→ −1}) = {rA �→ −1}
In the second component, the 1st power of xC is multiplied
by 5 · rA, leading to:

h({xC �→ 1}) = {rA �→ 5}
So, v(F,h) = −rAx−1

C + 5rAxC precisely when F = {{xC �→
−1},{xC �→ 1}} and h is defined such that h({xC �→ −1}) =
{rA �→ 1} and h({xC �→ 1}) = {rA �→ 5}. �

As a more complex example, consider the following:

Example 3 Let P = {1,rA,rB}, E = {xC,rC}. Expanding the
definition of v(F,h) in terms of P and E results in:

v(F,h) = ∑
f∈F

(
hf ,1 · 1+hf ,rA · rA +hf ,rB · rB

)(
x

fXC
C · r frC

C

)

Taking a different approach this time, consider how the value
grC−rA (from Example 1) can be represented. We are looking
for F and h such that:

∑ f∈F

(
hf ,1 · 1+hf ,rA · rA +hf ,rB · rB

)(
x

fXC
C · r frC

C

)
=

(−1 · rA) · (r0
C)+(1 · 1) · (r1

C)

4 Rob Delicata, Steve Schneider

Note that, on the left-hand side of the equation, each com-
ponent is in terms of the product of some powers of xC and
rC. Since xC does not appear in the target value rC − rA, this
leads us to:

∑ f∈F

(
hf ,1 · 1+hf ,rA · rA +hf ,rB · rB

)(
x

fXC
C · r frC

C

)
=

(−1 · rA) · (x0
C · r0

C)+(1 · 1) · (x0
C · r1

C)

This, in turn leads us to a definition of F:

F = {{xC �→ 0,rC �→ 0},{xC �→ 0,rC �→ 1}}
We also note that rB ∈ P does not appear in rC − rA. Expand-
ing the right-hand side in terms of P we get:

∑ f∈F

(
hf ,1 · 1+hf ,rA · rA +hf ,rB · rB

)(
x

fXC
C · r frC

C

)
=

(0 · 1+−1 · rA +0 · rB) · (x0
C · r0

C)
+

(1 · 1+0 · rA +0 · rB) · (x0
C · r1

C)

Finally, the coefficients of each P term in the above lead us
to define h such that:

h({xC �→ 0,rC �→ 0}) = {1 �→ 0,rA �→ −1,rB �→ 0}
h({xC �→ 0,rC �→ 1}) = {1 �→ 1,rA �→ 0,rB �→ 0}

We then obtain: v(F,h) = (0 · 1+−1 · rA + 0 · rB)(x0
C · r0

C)+
(1 · 1+0 · rA +0 · rB)(x0

C · r1
C) = −rA + rC. �

Note that, in the definition of the message-template, h is
defined in terms of F . Therefore, any values v(F1,h1) and
v(F2,h2) exhibit the following property:

Lemma 35 Given v(F1,h1) and v(F2,h2), we have that:

F1 �= F2 =⇒ h1 �= h2 	

As stated, our intention is that, for a given system (defined
by E and P), the polynomial v(F,h) expresses the general
form of all values deducible by an attacker, from P and E, by
appeal to the deduction rules of Definition 31. We embed the
ability of a polynomial to take a certain value in the concept
of realisability:

Definition 36 A value m is realisable (written realisable(m))
if there exists functions F and h such that v(F,h) = m.

That is, a value m is realisable if there exists a solution to
the equation v(F,h)−m = 0. If m is not realisable we write
¬realisable(m). Define Pub to be a closure containing all
possible polynomials for a given system. Pub is the set con-
taining all realisable values of that system: the set of public
messages.

Theorem 37 (Faithfulness) Fix some P and E and Pub as
defined above. Pub is closed under the deductions of Defini-
tion 31.

Proof. By induction. For the base case we show that, when-
ever p ∈ P, p is realisable.
Base case: Given some p ∈ P, p is realisable with v(F,h) by
defining:

F = {{e �→ 0 | e ∈ E}}
and:

h({e �→ 0 | e ∈ E}) = {p �→ 1}∪{q �→ 0 | q ∈ P\{p}}
Inductive step: There are three cases, corresponding to the
three attacker deduction rules:

(i) realisable(m1)∧ realisable(m2)
=⇒ realisable(m1 +m2)

(ii) realisable(m1)∧n ∈ E
=⇒ realisable(m1n)∧ realisable(m1n−1)

(iii) realisable(m1) =⇒ realisable(−m1)

(i) Assume m1 = v(F1,h1) and m2 = v(F2,h2). Then m1 +
m2 is realisable with v(F3,h3) by defining F3 = F1 ∪F2 and
h such that:

h3(f) =⎧⎪⎨
⎪⎩

h1(f) if f ∈ dom(h1)\dom(h2)
h2(f) if f ∈ dom(h2)\dom(h1)
λ p.h1(f)(p)+h2(f)(p) if f ∈ dom(h1)∩dom(h2)

(ii) For the first conjunct assume m1 = v(F1,h1) and n ∈
E. Then, m1n is realisable with v(F2,h2) by defining:

F2 = { f ⊕{n �→ (F1(n)+1)} | f ∈ F1}
and h2 such that:

h2(f) = h1(f ⊕{n �→ (f (n)−1)})
The second conjunct follows the above, with addition in place
of the subtraction in the definition of h2.

(iii) Assume m1 = v(F1,h1). Then −m1 is realisable with
v(F1,h2) where h2 is defined such that

h2(f)(p) = −(h1(f)(p)) 	

Our intention is for the model to respect the fact that

some values are impossible for an attacker to guess. We
achieve this by assuming that the variables (rA, xC, etc.) are
symbolic, that each is distinct from all others, and that the
set of variables is disjoint from the set of integers.

Assumption 34 (P∪E)∩Z = /0

The following example makes clear why this restriction is
necessary:

Example 4 Consider the system defined by P = {1} and E =
{xC}. If variables are numbers, then any group value gX can
be realised by defining X = v(F,h), where F = {{xC �→ 0}}
and h({xC �→ 0}) = {1 �→ X}, yielding v(F,h) = (1 ·X)x0

C =
X . �

An algebraic approach to the verification of a class of Diffie-Hellman protocols 5

Assumption 34 means that, for the group identity 1, we have
that 1 /∈ Z and, in particular, 1 �= 1. However, we grant spe-
cial privileges to the group identity such that 1 ·m = m, for
all m. Note that an element n ∈ E \ P will typically only
be realisable if 1 ∈ P. That is, n is realisable by v(F,h),
where F = {{n �→ 1}} and h({n �→ 1}) = {1 �→ 1}, giving
1 · (1 ·n1) = n.

Condition 38 1 ∈ P =⇒ P∩E = /0

We require that the above condition be true of any proto-
col model. To see why this is necessary consider the system
given by E = {xC}, P = {1,xC}. The value xC can be realised
in two ways, xC = v(F,h1) = v(F,h2), where:

F = {{xC �→ 0},{xC �→ 1}}
and h1, h2 are defined such that:

h1({xC �→ 0}) = {1 �→ 0,xC �→ 1}
h1({xC �→ 1}) = {1 �→ 0,xC �→ 0}

h2({xC �→ 0}) = {1 �→ 0,xC �→ 0}
h2({xC �→ 1}) = {1 �→ 1,xC �→ 0}

The first case yields v(F,h1) = (xC)x0
C +(0)x1

C = xC and the
second results in v(F,h2) = (0)x0

C +(1)x1
C = xC. Since h1 �=

h2, but v(F,h1) = v(F,h2), the example allows the same value
to be derived in two separate ways.

Even in the context of Condition 38, the important prop-
erty of unique realisability—that a value can be realised in at
most one way—is not generally true. Consider the following
counter-example:

Example 5 Let E = {xC}, P = {xA} and note that E and P
satisfy Condition 38. The value xAxC can be realised in at
least two ways:

(i) Define v(F1,h1) where:

F1 = {{xC �→ 0},{xC �→ 1}}
h1({xC �→ 0}) = {xA �→ 0}
h1({xC �→ 1}) = {xA �→ 1}

Then v(F1,h1) = 1xAx1
C +0xAx0

C = xAxC.
(ii) Define v(F2,h2) where:

F1 = {{xC �→ 1},{xC �→ 2}}
h1({xC �→ 1}) = {xA �→ 1}
h1({xC �→ 2}) = {xA �→ 0}

Then v(F2,h2) = 1xAx1
C +0xAx2

C = xAxC. �
In this example, the property of unique realisability is vio-
lated by the presence, in the linear combinations, of com-
ponents equalling 0, in (i) we have 0xAx0

C = 0 and, in (ii),
0xAx2

C. We introduce a normalisation procedure which re-
moves such degenerate components.

Definition 39 Given v(F,h), define norm(v(F,h))= v(F ′,h′)
where:

F ′ = F \{ f ∈ F | ran(h(f)) = {0}}
h′ = h\{h(f) | f ∈ F ∧ ran(h(f)) = {0}}

This would yield, for example, norm(v(F1,h1)) = v(F ′
1,h

′
1),

where F ′
1 = {{xc �→ 0}} and h′1({xC �→ 1}) = {xA �→ 1}. For

the remainder of this paper, we assume that all values are
normalised.

Theorem 310 (Unique realisability) Fix some E and P sat-
isfying Condition 38. Given some v(F1,h1) and v(F2,h2),

v(F1,h1) = v(F2,h2) =⇒ F1 = F2 ∧h1 = h2

Proof. For a contradiction assume some F1, F2, h1 and h2
such that v(F1,h1) = v(F2,h2) but ¬(F1 = F2 ∧ h1 = h2).
Since:

¬(F1 = F2∧h1 = h2) = F1 �= F2∨h1 �= h2

there appear to be two cases to consider, F1 �= F2 and h1 �= h2.
However, from Lemma 35 we have that F1 �= F2 =⇒ h1 �= h2,
so it will be sufficient to treat the case h1 �= h2.

In this case, h1 �= h2 tells us that (a) there exists some
f ∈F , p∈P s.t. h1(f)(p) /∈ ran(h2) or, (b) there exists some
f ∈ F , p ∈ P s.t. h2(f)(p) /∈ ran(h1). We will only treat case
(a) here, noting that the same proof (with subscripts altered)
also applies to (b).

Given h1(f)(p) /∈ ran(h2) either f /∈ F2 or f ∈ F2. In this
first case, there exists some coefficient of the linear combi-
nation of v(F1,h1) which does not appear in v(F2,h2). Since
variables are symbolic, it is not possible for any combination
of components from v(F2,h2) to equal (and therefore cancel
with) the presence of f in v(F1,h1). Therefore, the equality
v(F1,h1) = v(F2,h2) cannot hold, yielding a contradiction.

In the case that f ∈ F2, h1(f)(p) /∈ ran(h2) tells us that
there exists some y ∈ Z s.t. y · p · f is a component of the
linear combination of v(F1,h1). Furthermore, since variables
are symbolic (and y · p · f is thus distinct from all other terms
on either side of the equation v(F1,h1) = v(F2,h2)), there
are no values of the coefficients of v(F2,h2) which will al-
low the equality to be met, yielding a contradiction which
establishes the theorem. 	

3.3 Secrecy

In a Diffie-Hellman protocol, a principal u performs some
key computation function on an input z to derive a secret
Zuv believed to be shared with v. We denote this function kuv
with Zuv = kuv(z).

Example 6 In the standard Diffie-Hellman protocol [11], a
principal A, apparently running with a principal claiming to
be B, and using the ephemeral secret xA, performs the key
computation kAB(z) = zxA representing ZAB = gzxA . �

Definition 311 (Secrecy) Given a system defined by E and
P, a key computation function k maintains secrecy iff:

∀m.realisable(m) =⇒ ¬realisable(k(m))

6 Rob Delicata, Steve Schneider

Intuitively, secrecy is defined as an anti-closure property of
the set of generable values: the result of applying k to a real-
isable value should never result in a realisable value. If this
property does not hold then an attacker will possess two val-
ues, x and y, such that, if x is sent to some principal she will
compute y, wrongly believing it to be secret.

4 Reasoning about the MTI A(0) protocol

A complete model of a protocol is a combination of the
message-template with an appropriate key computation func-
tion. In this section we present a model of the MTI A(0)
protocol and use it to deduce the conditions under which the
protocol guarantees the secrecy of a shared key.

Define EA(0) = {rC,xC}, PA(0) = {1,rA,rB,xA,xB}, rep-
resenting a run of the MTI A(0) protocol. We wish to show
that the key computation function kA(0)

ab (z) = zxa+xbra main-
tains secrecy. There are eight cases to consider:

1. a = A∧b = C 5. a = A∧b = A
2. a = B∧b = C 6. a = B∧b = B
3. a = C∧b = A 7. a = A∧b = B
4. a = C∧b = B 8. a = B∧b = A

We treat each in turn.

Cases 1–4

Let a = A and b = C. We are trying to show that, for any
z where realisable(z), ¬realisable(kA(0)

AC (z)). There exists
some F1 and h1 such that v(F1,h1) = z. If we can find some

F2 and h2 such that v(F2,h2) = kA(0)
AC (z) we will have shown

that kA(0)
AC (z) is realisable and is therefore not secret.

Note that kA(0)
AC (z) = zxA + xCrA is a linear combination,

and that the linear combination will be realisable if each of
its components is realisable. In general zxA will be realisable
if z does not mention xA (since xA ∈ P but xA /∈ E). Consider,
then, z = rC, given by v(F1,h1) where:

F1 = {{rC �→ 1}}
h1({rC �→ 1}) = {1 �→ 1}∪{p �→ 0 | p ∈ P\{1}}

then zxA = rCxA is realisable by v(F1,h3) where h3({rC �→
1}) = {xA �→ 1}. Similarly, xCrA is realisable by v(F3,h4),
where:

F3 = {{xC �→ 1}}
h4({xC �→ 1}) = {rA �→ 1}∪{p �→ 0 | p ∈ P\{rA}}

Theorem 37 then tells us that, since realisable(rCxA) and
realisable(xCrA), the sum rCxA +xCrA is also realisable, and
is given by v(F2,h2), where:

F2 = F1 ∪F3 = {{rC �→ 1},{xC �→ 1}}
h2({rC �→ 1}) = {xA �→ 1}∪{p �→ 0 | p ∈ P\{xA}}
h2({xC �→ 1}) = {rA �→ 1}∪{p �→ 0 | p ∈ P\{rA}}

From this we conclude that the attacker can deduce a pair
of values, rC and rCxA + xCrA, related by the key computa-

tion function kA(0)
AC , and so secrecy fails. This failure should

come as no surprise since b = C represents the attacker’s le-
gitimate participation in the protocol. Any honest principal
who willingly engages in a protocol run with the attacker
cannot hope to maintain secrecy of the resulting session-key.
We note that similar conclusions can be reached in cases 2–
4.

Cases 5 and 6 (b = a)

Let a = A, b = A. The corresponding key computation is
given by kA(0)

AA (z) = zxA + xArA. Note that xArA is the multi-
plication of two elements from P. The attacker model only
allows the addition of elements from P and, since xA /∈E and
rA /∈ E, the component xArA is unrealisable. Consequently,
for zxA + xArA to be realisable, zxA must be a linear combi-
nation that includes −xArA (since −xArA + xArA = 0 is real-
isable). Consider the simplest case, where z =−rA, which is

realisable, since rA ∈ P. The result of kA(0)
AA (−rA) =−rAxA +

xArA = 0 is realisable by v(F5,h5), where, for instance:

F5 = {{rC �→ 0},{xC �→ 0}}
h5({rC �→ 0}) = {p �→ 0 | p ∈ P}
h5({rC �→ 0}) = {p �→ 0 | p ∈ P}

As a result, the attacker can deduce a pair of values −rA and
0 such that 0 = kA(0)

AA (−rA) and, again, secrecy fails. A sim-
ilar result holds for case 6, where a = b = B. This attack is
a simpler version of one discovered by Just and Vaudenay
[13]. In the original attack, z was set to be rC − rA and the
resulting session-key computed as gxArC (where xArC is re-
alisable). The attack depends on A’s willingness to engage
in the protocol with herself, and can be seen as stipulating
a condition on an implementation: namely, that a principal
should only engage in the protocol if the other party has a
distinct identity.

Cases 7 and 8 (b �= a)

For the final cases, assume a = A and b = B (a similar result
holds for a = B and b = A). The key computation is given
by kA(0)

AB (z) = zxA +xBrA. For secrecy to fail there must exist

some z = v(F1,h1) and kA(0)
AB (z) = v(F2,h2) such that:

v(F1,h1) · xA + xBrA = v(F2,h2)

Consider the coefficient of x0
Cr0

C. We have:

h2({xC �→ 0,rC �→ 0}) = {1 �→ n1,rA �→ n2,
rB �→ n3,xA �→ n4,xB �→ n5}

h1({xC �→ 0,rC �→ 0}) = {1 �→ m1,rA �→ m2,
rB �→ m3,xA �→ m4,xB �→ m5}

An algebraic approach to the verification of a class of Diffie-Hellman protocols 7

for some m1 . . .m5 ∈ Z, n1 . . .n5 ∈ Z where the coefficients
on both sides are the same:

m1xA +m2rAxA +m3rBxA +m4x2
A +m5xBxA + xBrA

=
n1 +n2rA +n3rB +n4xA +n5xB

By assumption we have that variables are symbolic and that
a given symbol x is distinct from all others. Specifically, we
note that xBrA is distinct from all other terms on either side
of the equation and, therefore, there are no values of the co-
efficients which enable the equality to be met. We conclude

that, for any realisable z, kA(0)
AB (z) is unrealisable.

Results

The analysis enables us to state the following result:

Theorem 41 For protocol MTI A(0), given EA(0) = {rC,xC},
PA(0) = {1,rA,rB,xA,xB},

a �= C∧b �= C∧a �= b =⇒ kA(0)
ab maintains secrecy 	

This tells us that protocol A(0) maintains the secrecy of the
session-key precisely when the initiator and responder are
distinct entities and neither of them is the attacker C.

5 Further examples: A(i), B(i) and C(i)

In the previous section we saw how message-templates can
be used to reason about the MTI A(0) protocol. In fact, A(0)
is just one of an infinite number of protocols that fall under
the banner of MTI. In this section we investigate these pro-
tocols and describe their corresponding security analyses. In
particular, we note in passing that the correctness conditions
for A(0) appear to apply equally well in the general case
A(i). In the following, we concentrate instead on the remain-
ing MTI protocol classes: B(i) and C(i).

5.1 General form of the MTI protocols

All MTI protocols are of the same basic form, involving
the exchange of two messages, and aiming to provide im-
plicit authentication of the resulting shared secret. The three
classes of MTI protocols: A, B and C, differ in the pre-
cise format of the exchanged messages and the computation
which each principal performs to derive the shared secret.
The general form for each class is given in terms of a param-
eter i∈Z where, for instance, B(i) is the ith protocol of class
B. For comparison, Table 1 summarises the exponent of the
shared secret derived in each protocol.2 Protocols A(i), B(i)
and C(i) are given in Figures 3, 4 and 5, respectively.

2 Reproduced from [4].

i A(i) B(i) C(i)

−1 xAx−1
B rB + xBx−1

A rA x−1
A rA + x−1

B rB x−1
A rAx−1

B rB
0 xArB + xBrA rA + rB rArB
1 xAxBrB + xBxArA xArA + xBrB xArAxBrB

2 xAx2
BrB + xBx2

ArA x2
ArA + x2

BrB x2
ArAx2

BrB
...

...
...

...
k xAxi

BrB + xBxi
ArA xi

ArA + xi
BrB xi

ArAxi
BrB

Table 1 Exponent of shared secret in the MTI protocols

A B

rA ∈R Zq

zA = gxi
ArA

zA−−−−→ rB ∈R Zq

zB = gxi
BrB

ZAB = zxA
B y

rAxi
A

B

zB←−−−− ZAB = zxB
A y

rBxi
B

A

Fig. 3 MTI A(i) protocol

A B

rA ∈R Zq

zA = y
rAxi

A
B

zA−−−−→ rB ∈R Zq

zB = y
rBxi

B
A

ZAB = z
x−1
A rA

B grAxi
A

zB←−−−− ZAB = z
x−1
B

A grBxi
B

Fig. 4 MTI B(i) protocol

A B

rA ∈R Zq

zA = y
rAxi

A
B

zA−−−−→ rB ∈R Zq

zB = y
rBxi

B
A

ZAB = z
x−1
A rAxi

A
B

zB←−−−− ZAB = z
x−1
B rBxi

B
A

Fig. 5 MTI C(i) protocol

Note that the format of exchanged messages does not dif-
fer between the B(i) and C(i) protocols; instead, the distinc-
tion lies in the computation performed to derive the shared
secret in each case.

It is also interesting to note that the A(i) protocols are
rather different in nature to the B(i)/C(i) protocols. In the
A(i) protocols, any message M = gxi

ArA sent by a principal A
is independent of both:

– the claimed identity of the sender of any previously re-
ceived message,

– the intended recipient of M.

A’s intention to share a secret k with a principal B is cap-

tured in the key computation itself, ZAB = zxA
B y

rAxi
A

B , which
makes mention of B’s public-key, yB. (A’s computation of
the shared secret can be interpreted as a statement of belief:

8 Rob Delicata, Steve Schneider

at the point at which A performs the key computation she
believes that ZAB is a secret shared with no-one other than
B.)

The opposite is true of the B(i)/C(i) protocols, where A’s

output message, y
rAxi

A
B , is dependent on the identity of the

intended recipient (B). The key computations, on the other
hand:

– Protocol B(i): ZAB = z
x−1
A rA

B grAxi
A

– Protocol C(i): ZAB = z
x−1
A rAxi

A
B

are independent of the principal with whom A wishes to es-
tablish a shared secret since A only adds her own exponents
(rA and xA) to the received value zB. Whilst this difference
does not appear to have security implications, it does affect
the way in which we represent the protocols in our model.

5.2 Message-templates for B(i) and C(i)

We use the message-template of Definition 34, where we
define the set E (of known exponents) as:

EB = EC = E = {xC,rC}
where xC is the attacker C’s long-term secret-key and rC is
some random exponent generated by C. Note that the set EB

is independent of the protocol parameter, i. For each i ∈ Z,
we define the set PB(i) (of known powers of g) as follows:

PB(i) = {1,xA,xB}
∪
{xbraxi

a | b ∈ {A,B,C},a ∈ {A,B}}
The intuition behind this definition is based on several ob-
servations:

– An attacker can query a certification authority to obtain
the public-keys, gxA and gxB , of A and B, respectively,

– When a principal a = A wishes to establish a shared se-
cret with b = B, she does so by sending a message with
the exponent:

xbraxi
a = xBrAxi

A

– Since b may choose to run the protocol with any princi-
pal, we form P as a comprehension over the set {A,B,C}
of principals

– The attacker,C, is excluded from the comprehension over
a since any message of the form xbrCxi

C (b ∈ {A,B,C})
can be formed using the deductions rules of Definition
31 on the values xb ∈ PB(i), xC ∈ EB, rC ∈ EB.

This definition of PB allows the attacker to learn a larger set
of values than is typically assumed since it allows for the
reuse of the random exponents. For instance, PB(i) includes
the values xBrAxi

A and xCrAxi
A which respectively represent a

run between A and B and a run between A and C; the session
variable, rA, is used in both cases. However, proving correct-
ness in this context will enable us to conclude correctness in
a more restricted context where rA is used just once.

5.3 Reasoning about B(i)

Given an input z, a principal a in protocol B(i) computes the
shared secret with exponent zx−1

a +raxi
a. As noted above, a’s

key computation is independent of the identity of the other
protocol participant. The resulting key computation function
is therefore:

kB(i)
a (z) = zx−1

a + raxi
a

We wish to prove that, for any i ∈Z, kB(i)
a maintains secrecy.

The case a = C (representing the attacker’s key computation
function) is redundant since C can achieve the same result
using his deduction rules on the values xC, rC. We therefore
restrict ourselves to the following goal:

∀i ∈ Z,a ∈ {A,B}.kB(i)
a maintains secrecy

A first restriction

We begin by noting that, as with protocol A(0), we cannot
expect the shared secret to be unknown to C if either A or
B actually choose to run the protocol with C. In such a run
A and B will generate and send the values xCrAxi

A ∈ PB(i)
and xCrBxi

B ∈ PB(i), respectively, and kB(i)
a will not maintain

secrecy. We therefore consider the restricted set:

P′B(i) = {1,xA,xB}
∪
{xbraxi

a | b,a ∈ {A,B}}

A second restriction

We fix some arbitrary i∈Z and consider the case a = A, not-
ing that analogous results hold for a = B. For secrecy to fail
there must exist some z = v(F1,h1) and kB(i)

A (z) = v(F2,h2)
such that:

v(F1,h1)x−1
A + rAxi

A = v(F2,h2)

Consider the coefficient of xp
Crq

C, where p and q are arbitrary
integers:

h2({xC �→ p,rC �→ q}) = {
1 �→ n1,xA �→ n2,xB �→ n3,rAxi+1

A �→ n4, xArBxi
B �→ n5,

xBrAxi
A �→ n6, rBxi+1

B �→ n7}

h1({xC �→ p,rC �→ q}) = {
1 �→ m1,xA �→ m2,xB �→ m3,rAxi+1

A �→ m4, xArBxi
B �→ m5,

xBrAxi
A �→ m6, rBxi+1

B �→ m7}

for some m1, . . . ,m7 ∈ Z, n1, . . . ,n7 ∈ Z where the coeffi-
cients on both sides are the same:

An algebraic approach to the verification of a class of Diffie-Hellman protocols 9

m1x−1
A +m2 +m3xBx−1

A +m4rAxi
A +m5rBxi

B
+m6xBrAxi−1

A +m7rBxi+1
B x−1

A + rAxi
A

=
n1 +n2xA +n3xB +n4rAxi+1

A +n5xArBxi
B

+n6xBrAxi
A +n7rBxi+1

B

One solution that presents itself is m4 = −1, with all other
coefficients set to 0, resulting in:

−1rAxi
A + rAxi

A = 0

As with the impersonation attack on A(0), this attack ex-
ploits a scenario in which A runs the protocol with herself,
generating the value xArAxi

A. The attacker returns the inverse
of this value, −xArAxi

A, causing A to compute the exponent
of the shared secret as 0 (g0 = 1):

kB(i)
A (−xArAxi

A) = −xArAxi
Ax−1

A + rAxi
A = 0

As with A(0), this attack suggests that any implementation
should ensure that the protocol participants are distinct. How-
ever, it is worth considering whether this is strictly neces-
sary. The impersonation attack on A(0) allows the attacker
to force the shared secret to be computed as one of a number
of values. Here, the attack only appears to work when the
resulting exponent is 0 (i.e., the attacker cannot inject his
own value into the shared secret). We formalise this in the
property of non-degenerate-key secrecy:

Definition 51 (non-degenerate-key secrecy) Given a sys-
tem defined by E and P, a key computation function k main-
tains non-degenerate-key secrecy iff:

∀m.realisable(m)∧ k(m) �= 0 =⇒ ¬realisable(k(m))

non-degenerate-key secrecy is weaker than the secrecy prop-
erty of Definition 311 since it disregards cases where the ex-
ponent of the shared secret is computed as 0. Note that this
definition does not prevent the exponent of values passing
on the network from being 0.

Results

Restricting the output of kB(i)
A to non-zero values translates

to a constraint on the coefficients of v(F2,h2): that at least
one has to be initialised to a non-zero value. Under this con-
straint, it can be shown that the key computation function
kB(i)

a maintains non-degenerate-key secrecy, given EB and
P′B:

Theorem 52 For protocol MTI B(i), given EB = {rC,xC}
and P′B(i) = {1,xA,xB}∪{xbraxi

a | b,a ∈ {A,B}}:

∀i∈Z,a∈{A,B}.kB(i)
a maintains non-degenerate-key se-

crecy.

Proof. We fix some arbitrary i ∈ Z and consider the case a =
A, (an analogous result holds for a = B). For non-degenerate

secrecy to fail there must exist some z = v(F1,h1) and kB(i)
A (z) =

v(F2,h2) such that:

v(F1,h1)x−1
A + rAxi

A = v(F2,h2)

where v(F2,h2) �= 0. The constraint that the resulting secret
be non-zero means that there must exist at least one non-
zero coefficient in v(F2,h2). Let p ∈ Z, q ∈ Z be the powers
of xC and rC (respectively) in v(F2,h2) in which a non-zero
coefficient occurs. the coefficient of xp

Crq
C, where p and q are

arbitrary integers:

h2({xC �→ p,rC �→ q}) = {
1 �→ n1,xA �→ n2,xB �→ n3,rAxi+1

A �→ n4, xArBxi
B �→ n5,

xBrAxi
A �→ n6, rBxi+1

B �→ n7}

h1({xC �→ p,rC �→ q}) = {
1 �→ m1,xA �→ m2,xB �→ m3,rAxi+1

A �→ m4, xArBxi
B �→ m5,

xBrAxi
A �→ m6, rBxi+1

B �→ m7}
for some m1, . . . ,m7 ∈ Z, n1, . . . ,n7 ∈ Z where the coeffi-
cients on both sides are the same:

m1x−1
A +m2 +m3xBx−1

A +m4rAxi
A +m5rBxi

B
+m6xBrAxi−1

A +m7rBxi+1
B x−1

A + rAxi
A

=
n1 +n2xA +n3xB +n4rAxi+1

A +n5xArBxi
B

+n6xBrAxi
A +n7rBxi+1

B

One of n1, . . . ,n7 must be non-zero; let this coefficient be
nr . By assumption we have that variables are symbolic and
that a given symbol x is distinct from all others. Specifically,
there is no value of the coefficient nr which can enable the
equality to be met. For example, if nr = n4, then the compo-
nent nrrAxi+1

A is distinct from all terms on either side of the
equation.

As a result, we conclude that, for any i ∈ Z, kB(i)
a (z) is

unrealisable (under the assumption that kB(i)
a (z) �= 0), and the

theorem holds. 	

5.4 Reasoning about C(i)

The C(i) protocols involve the same exchange of messages
as the class B protocols; the difference lies in the key com-
putation. In an ideal run of C(i), each principal computes the
key:

ZAB = (gxArBxi
B)x−1

A rAxi
A = (gxBrAxi

A)x−1
B rBxi

B = gxi
ArAxi

BrB

In our model, a principal a, on receipt of an input z, will
perform the following key computation:

kC(i)
a (z) = zx−1

a raxi
a

10 Rob Delicata, Steve Schneider

Following the approach that we used for B(i), we consider
whether there exist realisable values, v(F1,h1) (whose coef-
ficients are represented by subscripted m values) and v(F2,h2)
(represented by subscripted n values), such that:

kC(i)
a (v(F1,h1)) = v(F1,h1)x−1

a raxi
a = v(F2,h2)

To exclude cases where honest principals willingly engage
with the attacker, we define the P set as per the first restric-
tion in the B(i) analysis, above. Specifically, we have that:

PC(i) = {1,xA,xB}
∪
{xbraxi

a | b,a ∈ {A,B}}

We also define EC = EB = {xC,rC}. As before, we fix a = A
and consider the coefficients of xp

Crq
C, for arbitrary integers p

and q. For secrecy to fail, the following equality must hold:

m1x−1
A rAxi

A +m2xAx−1
A rAxi

A +m3xBx−1
A rAxi

A
+m4rAxi+1

A x−1
A rAxi

A +m5xArBxi
Bx−1

A rAxi
A

+m6xBrAxi
Ax−1

A rAxi
A +m7rBxi+1

B x−1
A rAxi

A
=

n1 +n2xA +n3xB +n4rAxi+1
A +n5xArBxi

B
+n6xBrAxi

A +n7rBxi+1
B

In contrast to the A(i) and B(i) protocols, the left-hand side
of the above equation does not contain any component that
is not multiplied by an m coefficient. This arises from the
difference in key computation between A(i)/B(i) and C(i).
In the former cases, the key computation relies on the multi-
plication of two elements of G, and results in the presence of
addition in the exponent of the shared secret (gx ·gy = gx+y).
In the latter case, the key is computed by exponentiating
the received value, and the exponent of the shared secret is
therefore a simple product ((gx)y = gxy). For this reason, the
above equation can be solved, very simply, by setting all co-
efficients to 0, resulting in 0 = 0. This solution corresponds
to a well-known attack on standard Diffie-Hellman, where
the attacker simply replaces the exchanged values, zA and
zB, with g0 = 1. The principals then compute the shared se-
cret:

ZAB = 1x−1
A rAxi

A = 1x−1
B rBxi

B = 1

which is realisable by the attacker. This attack can be pre-
vented in a straightforward manner; each principal must check
incoming messages and reject those which have the degen-
erate value g0 = 1. This translates to a constraint on the co-
efficients of v(F1,h2): that at least one has to be initialised to
a non-zero value. We formalise this property in the concept
of non-degenerate-input secrecy:

Definition 53 (non-degenerate-input secrecy) Given a sys-
tem defined by E and P, a key computation function k main-
tains non-degenerate-input secrecy iff:

∀m.realisable(m)∧m �= 0 =⇒ ¬realisable(k(m))

Note the difference between the three definitions of secrecy
that we have introduced in this paper—the first (secrecy)
is unconstrained; the second (non-degenerate-key secrecy)
looks at cases where the exponent of the value output by
the key computation function is non-zero; the third (non-
degenerate-input-secrecy) looks at cases where the exponent
of the value input to the key computation function is non-
zero.

Results

It can be shown that the key computation function kC(i)
a main-

tains non-degenerate-input secrecy, given EB and P′B:

Theorem 54 For protocol C(i), given EC = {rC,xC} and
PC(i) = {1,xA,xB}∪{xbraxi

a | b,a ∈ {A,B}}:

∀i ∈ Z,a ∈ {A,B}.kC(i)
a maintains non-degenerate-input

secrecy.

Proof. The argument used in this proof is similar to that used
in the proof of Theorem 52. We consider whether there ex-
ist realisable values, v(F1,h1) (whose coefficients are rep-
resented by subscripted m values) and v(F2,h2) (represented

by subscripted n values), such that kC(i)
a (v(F1,h1)) = v(F2,h2).

Specifically, we fix some arbitrary i∈Z, a = A, and consider
the coefficients of xp

Crq
C for arbitrary integers p and q. For se-

crecy to fail, the following equality must hold:

m1x−1
A rAxi

A +m2xAx−1
A rAxi

A +m3xBx−1
A rAxi

A
+m4rAxi+1

A x−1
A rAxi

A +m5xArBxi
Bx−1

A rAxi
A

+m6xBrAxi
Ax−1

A rAxi
A +m7rBxi+1

B x−1
A rAxi

A
=

n1 +n2xA +n3xB +n4rAxi+1
A +n5xArBxi

B
+n6xBrAxi

A +n7rBxi+1
B

In the case of non-degenerate-input secrecy, we only con-
sider cases where one of the m coefficients has a non-zero
value. By assumption we have that variables are symbolic
and that a given symbol x is distinct from all others. In par-
ticular, since each component of the linear combination is
distinct from all others (on either side of the equation), there
can be no values of the coefficients which cause the equality
to hold. Therefore, the theorem holds. 	

6 Discussion

6.1 Summary of results

The three classes of MTI protocols are conceptually simi-
lar, yet the security results yielded by our model are subtly
different in each case:

An algebraic approach to the verification of a class of Diffie-Hellman protocols 11

A(i)

The model of the A(i) protocol maintains the secrecy of the
shared secret if the run involves distinct, and honest, proto-
col participants. If a principal is willing to run the protocol
with herself an attacker can manipulate that run to learn the
(possibly non-degenerate) session-keys.

B(i)

The B(i) protocol maintains the secrecy of the shared secret
if the run involves honest protocol participants, and each re-
jects any shared secrets computed as 1 (i.e., when the expo-
nent of the shared secret is 0). Note, in particular, that this
does not preclude situations where a principal runs the pro-
tocol with herself.

C(i)

The C(i) protocol maintains the secrecy of the shared secret
if the run involves honest protocol participants and each re-
jects incoming values of 1 (i.e., g0). If a principal is willing
to accept 1 as an input to the key computation function she
will compute a shared secret (ZAB = 1) which is known to
the attacker.

6.2 The link with rank functions

Although we have not described our approach in such terms,
it shares a conceptual origin with the notion of a rank func-
tion. In the context of protocol verification, a rank func-
tion describes an invariant property of a system [20]. This
property will define the sorts of messages that may pass
through the system, crucially distinguishing certain values
that should remain secret. The rank function effectively par-
titions the message-space of a protocol by assigning a rank
of pub to public and sec to secret messages. Traditionally a
rank function is defined over the message-space of a proto-
col model expressed in the process algebra CSP [21], and a
central rank theorem gives a series of proof obligations on
the rank function whose achievement allows us to conclude
that only messages of rank pub ever appear on the network.
Previous work has applied the rank function approach in the
context of Diffie-Hellman protocols [10]. However, a funda-
mental difficulty with this approach is the necessity to stati-
cally assign a rank to messages. It is interesting to note that
the present work side-steps this issue by defining (via the
message-template) the set Pub of public messages. This set
corresponds to the set of messages assigned a rank of pub by
the rank approach.3

One could extend the analogy by defining the set Sec,
of secret messages, as the range of a given key computation
function (whose input is restricted to values in Pub). The set
Sec would then correspond to the set of messages assigned a

3 In fact, Pub is similar to Heather’s concept of a minimal rank func-
tion [12].

rank of sec by a rank function. In this view secrecy is main-
tained if the sets Pub and Sec contain no common elements.

6.3 Pereira and Quisquater’s approach

Recently, Pereira and Quisquater [19] developed a formal
model of the Cliques conference key agreement protocols
[3], based on linear logic, and discovered attacks on each
of the claimed security properties. In the model, secrecy is
defined as the inability of an attacker to discover a pair of
values (gx,gy) such that, if a principal is sent gx, he will
compute the key gy. Values are assumed to take the form of
g raised to a product of exponents, and secrecy becomes the
inability of an attacker to learn a pair of messages separated
by the ratio y

x . The model allows the attacker to grow a set
of known ratios, in the hope that some secret ratio(s) remain
unobtainable. This ratio-centric view of secrecy seems par-
ticularly natural for Diffie-Hellman exchanges, and our ini-
tial attempts at modelling the MTI protocols sought to em-
brace this approach. However, it turns out that this view of
secrecy does not generalise in the obvious way. Consider, for
example, a value z in the A(0) protocol, and the key com-

putation function kA(0)
AB (z) = zxA + xBrA. The ratio between

kA(0)
AB (z) and z:

zxA + xBrA

z
= xA +

xBrA

z

is still in terms of z, due to the presence of addition in the
exponents. This fact makes it difficult to derive the set of
secret ratios, since a ratio cannot be stated without recourse
to the argument to the key computation function. The present
work can be viewed as an attempt to provide a more general
view of Diffie-Hellman key computation.

In a different respect, Pereira’s and Quisquater’s model
is more general than ours, since it applies to protocols which
provides services, in which protocol participants receive a
message, perform some computation on that message and
send out the result. These services are encoded in terms of
the values added to the exponent of an incoming message.
For instance, a principal may receive a message gx and gen-
erate and send the message gxyz (where y and z are known
to that principal). The attacker can then (with some restric-
tions) use the principal as an oracle, enabling him to send
a spurious message gc and receive gcyz in return. One could
envisage weakening the assumptions of the current work by
internalising such services in the attacker (in the style of
Broadfoot and Roscoe [6]) where, for example, the multi-
plication of a value with yz is encoded as an additional at-
tacker deduction. The message-template would need to be
redesigned to account for these additional capabilities. In
contrast to the present work, such a message-template would
tend to be protocol specific.

12 Rob Delicata, Steve Schneider

6.4 Assumptions and attacks

In light of the above, some care is needed in establishing the
assumptions upon which our proofs of the the MTI protocols
are based.

Consider the three assumptions of Section 3. These as-
sumptions are necessary, since attacks exist when one or
more of them are relaxed. For example, Menezes et al. [17]
discovered an unknown key-share attack on all classes of
the MTI protocols under the assumption that an attacker can
register a public-key yC which is related to A’s public-key by
the equation yC = yxC

A = gxAxC . However, C does not know the
corresponding secret key (in violation of Assumption 32).4

As another example, Lim and Lee devised attacks which ap-
ply to MTI variants [14]. These attacks depend on the at-
tacker sending a value to an honest principal B which is not
in the group G, and so violates the Assumption 31. Lastly,
Burmester proposed an attack which requires the attacker,C,
to run the protocol with both A and B and later induce A and
B to reveal the keys used in sessions between them [7]. This
violates Assumption 33.

These attacks are computational in flavour, and it is not
clear whether a symbolic approach should seek to reason
about such attacks. It is clear, however, that care should be
taken—when claiming a proof of correctness—to state the
assumptions on which that proof is founded.

7 Conclusion and further work

We have presented a framework for reasoning about secrecy
in a class of Diffie-Hellman protocols, and demonstrated the
approach by a consideration of secrecy in the MTI protocols.
The work hinges around the idea of a message-template, a
term which defines, in a highly abstract way, the values that
can be deduced by an attacker under a given set of capa-
bilities. A protocol model is given as a combination of a
message-template and a function representing the key com-
putation applied by a principal to derive a shared secret.

This work is nascent, but we are currently applying it to
protocols beyond the MTI suite. In particular, we have used
the approach to reason about two further key agreement pro-
tocols: one proposed independently by Just and Vaudenay
[13] and Song and Kim [22], and another due to Ateniese,
Steiner and Tsudik [3]; in both cases we can apply our ap-
proach without modification. Other protocols, however, may
prompt us to extend the approach. The key establishment
protocol of Agnew, Mullin and Vanstone, for instance [2],
makes use of messages of the form gx · y, where y is an in-
teger (and not a group element). This is inexpressible in our
current model where we are limited to messages expressible
as g raised to the power of a sum of products of integers. Re-
laxing the restrictions on our algebra to allow the expression

4 However, it is not clear that this attack actually violates implicit
key authentication. Furthermore, as noted in [4], the importance of un-
known key-share attacks is questionable as there exist well-understood
methods of prevention.

of such messages seems particularly interesting. The consid-
eration of further protocols (such as Cliques) may require us
to address situations in which protocol participants provide
services. In many cases, this extension appears straightfor-
ward.

The ad hoc nature of the secrecy proof in Section 4 is un-
fortunate, and it would be useful to derive a general frame-
work for such proof (as is achieved in [19], for instance).
There also appears to be interesting links between the idea
of a message-template and the concept of ideal used within
the strand space approach [23]. Future work will investigate
whether this correspondence enables us to deduce general
principles with which a protocol can be proven correct.

References

1. Abadi, M., Cortier, V.: Deciding knowledge in security proto-
cols under equational theories. In: 31st international Colloquium
on Automata, Languages and Programming: ICALP’04, Lecture
Notes in Computer Science, vol. 3142. Springer-Verlag (2004)

2. Agnew, G., Mullin, R., Vanstone, S.: An interactive data exchange
protocol based on discrete exponentiation. In: Advances in cryp-
tology: Proceedings of EUROCRYPT ’88, Lecture Notes in Com-
puter Science, vol. 0330. Springer-Verlag (1988)

3. Ateniese, G., Steiner, M., Tsudik, G.: Authenticated group key
agreement and friends. In: Proceedings of the 5th ACM con-
ference on Computer and Communication Security. ACM Press
(2000)

4. Boyd, C., Mathuria, A.: Protocols for Authentication and Key Es-
tablishment. Springer-Verlag (2003)

5. Bresson, E., Chevassut, O., Pointcheval, D.: Provably authenti-
cated group Diffie-Hellman key exchange—the dynamic case. In:
Advances in Cryptology: Proceedings of ASIACRYPT ’01, Lec-
ture Notes in Computer Science, vol. 2248. Springer-Verlag (2001)

6. Broadfoot, P., Roscoe, A.W.: Internalising agents in CSP protocol
models. In: Workshop on Issues in the Theory of Security: WITS
’02 (2002)

7. Burmester, M.: On the risk of opening distributed keys. In:
Advances in Cryptology: Proceedings of CRYPTO ’94, Lecture
Notes in Computer Science, vol. 0839. Springer-Verlag (1994)

8. Delicata, R., Schneider, S.: A formal model of Diffie-Hellman us-
ing CSP and rank functions. Tech. Rep. CSD-TR-03-05, Depart-
ment of Computer Science, Royal Holloway, University of Lon-
don (2003)

9. Delicata, R., Schneider, S.: A formal approach to the verification
of a class of Diffie-Hellman protocols. In: 3rd international work-
shop on Formal Aspects of Security and Trust: FAST2005, Lec-
ture Notes in Computer Science. Springer-Verlag (2005). To ap-
pear

10. Delicata, R., Schneider, S.: Temporal rank functions for forward
secrecy. In: Proceedings of the 18th Computer Security Founda-
tions Workshop: CSFW-18. IEEE Computer Society Press (2005)

11. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE
Transactions on Information Theory IT-22(6) (1976)

12. Heather, J.: ‘Oh! ... Is it really you?’ using rank functions to verify
authentication protocols. Ph.D Thesis, Royal Holloway, Univer-
sity of London (2001)

13. Just, M., Vaudenay, S.: Authenticated multi-party key agreement.
In: Advances in Cryptology: Proceedings of ASIACRYPT ’96,
Lecture Notes in Computer Science, vol. 1163. Springer-Verlag
(1996)

14. Lim, C., Lee, P.: A key recovery attack on discrete log-based
schemes using a prime order subgroup. In: Advances in Cryp-
tology: Proceedings of CRYPTO ’97, Lecture Notes in Computer
Science, vol. 1294. Springer-Verlag (1994)

An algebraic approach to the verification of a class of Diffie-Hellman protocols 13

15. Matsumoto, T., Takashima, Y., Imai, H.: On seeking smart public-
key-distribution systems. Transactions of the IECE of Japan
E69(2) (1986)

16. Meadows, C.: Extending formal cryptographic protocol analysis
techniques for group protocols and low-level cryptographic prim-
itives. In: Workshop on Issues in the Theory of Security: WITS
’00 (2000)

17. Menezes, A., Qu, M., Vanstone, S.: Some new key agreement pro-
tocols providing mutual implicit authentication. In: Workshop on
Selected Areas in Cryptography: SAC ’95 (1995)

18. Millen, J., Shmatikov, V.: Symbolic protocol analysis with prod-
ucts and Diffie-Hellman exponentiation. In: Proceedings of the
16th Computer Security Foundations Workshop: CSFW-16. IEEE
Computer Society Press (2003)

19. Pereira, O., Quisquater, J.J.: Security analysis of the Cliques pro-
tocols suites. In: Proceedings of the 14th IEEE Computer Security
Foundations Workshop: CSFW-14. IEEE Computer Society Press
(2001)

20. Schneider, S.: Verifying authentication protocols with CSP. In:
Proceedings of the 10th IEEE Computer Security Foundations
Workshop: CSFW-10. IEEE Computer Society Press (1997)

21. Schneider, S.: Concurrent and Real-time Systems: The CSP Ap-
proach. John Wiley and Sons (2000)

22. Song, B., Kim, K.: Two-pass authenticated key agreement proto-
cols with key confirmation. In: Progress in Cryptology: Proceed-
ings of INDOCRYPT 2000, Lecture Notes in Computer Science,
vol. 1977. Springer-Verlag (2000)

23. Thayer Fábrega, F.J., Herzog, J., Guttman, J.: Strand spaces: Prov-
ing security protocols correct. Journal of Computer Security
7(2/3) (1999)

