Under consideration for publication in Formal Aspects of Computing

Tank monitoring: a pAMN case study

Steve Schneider!, Thai Son Hoang?, Ken Robinson?, and Helen Treharne!

Abstract. The introduction of probabilistic behaviour into the B-Method is a recent development. In ad-
dition to allowing probabilistic behaviour to be modelled, the relationship between expected values of the
machine state can be expressed and verified. This paper explores the application of probabilistic B to a sim-
ple case study: tracking the volume of liquid held in a tank by measuring the flow of liquid into it. The flow
can change as time progresses, and sensors are used to measure the flow with some degree of accuracy and
reliability, modelled as non-deterministic and probabilistic behaviour respectively. At the specification level,
the analysis is concerned with the EXPECTATION clause in the probabilistic B machine and its consistency
with machine operations. At the refinement level, refinement and equivalence laws on probabilistic GSL are
used to establish that a particular design of sensors delivers the required level of reliability.

Keywords: Probabilistic B, refinement, formal methods, probabilistic predicate transformers.

1. Introduction

This paper explores the application of probabilistic B to a simple case study: tracking the volume of liquid
held in a tank by measuring the liquid flow into it. The flow can change as time progresses. Sensors with
a given reliability are used to measure the flow and provide information to the system, so there is a small
probability that the sensors will fail, giving an incorrect reading. The behaviour of the sensors is described
using probabilistic B. We include the tank explicitly in our model so that we can describe the relationship
between the actual volume of liquid it contains and our system’s measurement for it. As well as probabilistic
behaviour, our system exhibits nondeterministic behaviour in the reading that a failed sensor will give, and
(after the first scenario we consider) in the reading that a correctly working sensor will give: any value from
a particular range. Thus the case study explores the interaction between probabilistic and nondeterministic
behaviour.

The case study is concerned with two stages of the development process: specification, and refinement. At
the specification level we are concerned with obtaining bounds on the accuracy of the system’s value for the
volume of liquid in the tank, given a particular level of reliability for the combination of sensors providing
the readings. This analysis will be concerned with the EXPECTATION clause in the probabilistic B machine.
At the refinement level, we are concerned with establishing that a particular combination of sensors does
indeed deliver the required level of reliability. This analysis will make use of refinement and equivalence laws.
This paper is a full version of the work presented in [STRT05].

L University of Surrey, UK
2 University of New South Wales, Australia

2 Schneider et al.

The paper is structured as follows: we introduce the background approach and notation in Sections 2 and
3. Section 4 introduces the Tank case study. Section 5 introduces an initial approach to specification and
refinement of a monitoring system for the Tank, introducing error margins on sensor readings of the tank. By
progressively introducing more uncertainty, we investigate the significance to the specification of the possible
flows of liquid into the tank, and the impact of error margins for the sensors. In Section 6, we consider a
more general approach to modelling the system, in which system updates and tank updates occur separately
and independently. This change in approach has a significant impact on the specification, but the refinement
stage, and implementation of flow readings via the sensors, remains as it was in the previous section. The
paper concludes with a discussion of what has been achieved, and some pointers to further work.

2. The B-Method

The B-Method [Abr96a] provides a framework for the development of provably correct systems, based on the
weakest precondition semantics of the Generalised Substitution Language (GSL), and structured around the
concept of Abstract Machines. These are the fundamental components of a system description, built around
the encapsulation of coherent state information, together with operations, and state invariants. Machines are
associated with proof obligations, which ensure that the invariants are always preserved by the operations.
Different aspects of a system description may be encapsulated within different machines, encouraging a
separation of concerns. Machines may be used to describe components which will eventually be intended for
code, and they may also be used to describe other system components which the code is to interact with. In
this paper we will see examples of both. The description of the Tank, given in Figure 3, is an example of a
model of an external system; and the description of the VolumeTracker, given in Figure 4, is an example of
a description of a software component.

Machines are described in a number of clauses, in a language known as Abstract Machine Notation.
This notation is itself based on Generalised Substitution Language, a generalisation of Dijkstra’s guarded
command language [Dij76].

System developments are built up as combinations of machine descriptions, integrated through the B
structuring mechanisms. These mechanisms are essentially of two kinds: including machines within others,
and allowing read access to machines from others. They are designed ensure that the requirements expressed
through the invariants remain true, and that new requirements on the relationships between machines can
be expressed and verified.

Refinement and implementation is also carried out within the framework of machines. Implementations
are themselves special kinds of machine, which bear the appropriate (simulation) relationship to the corre-
sponding abstract machine. These may themselves make use of lower-level abstract machines, leading to a
layered structure of implementations. For example, the implementation of VolumeTracker given in Figure 6
makes use of some sensor abstract machines, which describe the behaviour of the individual tank sensors.

The introduction of probabilistic behaviour into the B-Method has recently been proposed [HJRT03],
called probabilistic B. This approach builds on previous work which introduces probabilistic choice into
program statements, and extends the notion of weakest precondition semantics to deal with expectations
[MMS96]. An expectation can be considered as the expected value of a formula or expression. Thus programs
can be viewed as expectation transformers rather than predicate transformers, and their semantics gives the
expectation of an expression after the program has been executed in terms of expectations prior to execution.

In addition to allowing such probabilistic behaviour into programs, probabilistic B introduces expectations
on aspects of the state, in addition to the existing parts of a B machine. Thus the relationship between the
expected values of several components of the machine state can be expressed and formally verified.

3. Introducing Probability

The introduction of probability presented in the paper remains within the context of abstract machines,
and the proof obligations are augmented, to ensure that probabilistic invariants are also preserved by the
probabilistic operations.

Tank monitoring: a pAMN case study 3

The probabilistic generalised substitution language pGSL acts over expectations rather than predicates. Expectations are
bounded non-negative real-valued functions of the state space, with the exception that when dealing with miracles they can
take a formal value oco.

[z := Elexp exp|E /x)

[z,y := E, Flezp exp|E, F/z,y]

[pre | prog)exp (pre) x [prog]exp, where 0 X co = 0
progi [|progs [progi] exp min[progs] exp

[pre => prog]exp 1/{pre) x [prog]exp, where oo x 0 = oo
[skip]exp exp

[prog1 p® progzlezp p X [progi]ezp + (1 — p) X [progz]ezp
[Qy.pred = proglezp (minvy | pred.[prog|ezp)
progi C proga [progi]exp = [progz]exp for all exp.
e exp is an expectation
pre is a predicate (not an expectation)
(pre) denotes predicate pre converted to an expectation, here restricted to the unit interval: (false) is 0 and (true) is 1.
X is multiplication.
prog, progi, proga are probabilistic generalised substitutions.

°
°
°
°
e p is an expression over the program variables (possibly but not necessarily constant), taking a value in [0, 1].
e 1 is a variable.

e y is a variable or a vector of variables.

e [is an expression.

e [’ is an expression, or a vector of expressions.

°

exp] = expz means that erp; is everywhere no more than exps.

Fig. 1. pGSL—the probabilistic Generalised Substitution Language [Mor98]

3.1. Probabilistic GSL
pGSL is an extension of GSL to include a probabilistic choice statement:

progi pb proge

An execution of this choice will execute prog; with probability p, and will execute progs with probability
1 — p. See [Mor98, MM04, MMHO3] for a full introduction to pGSL

To give a semantics to pGSL programs, we make use of expectations: bounded non-negative real-valued
functions of the state space. These are generally expressed as formulas over the state variables. The weakest
pre-expectation semantics for a program prog maps an expectation exp to another expectation [prog]exp,
analogous to weakest precondition semantics. It gives the expected value for exp after prog in terms of
expectations on the state before. The language and its semantics from [Mor98§] is given in Figure 1.

In this paper we will use a derived operator (also given in [Abr96a]) for assigning to a variable some
element from a set S chosen nondeterministically. We define

r:€S=Qy(yesS = z:=y)
Thus
[z :€ Slexp = (minz | z € S.exp)

We will also use a derived operator (also given in [MMO04]) for expressing a minimum probability on a
choice. We define

Progy >p® proga = Qq.(p < ¢ < 1) = progi @ progs

This program chooses prog; with a probability of at least p.

The operator is useful for describing systems with a minimum required reliability. If a component is
required to behave correctly at least 90% of the time, then this may be described as correct 0.9® incorrect.
This would be refined by a component that behaves correctly at least 95% of the time, for example.

4 Schneider et al.

flow ﬁ

volume

Fig. 2. The tank system

3.2. Some pGSL laws

The semantics supports a collection of algebraic laws concerning the various operators. An extended collection
of laws is given in Appendix A.3 of [MMO04]. The following laws from that Appendix will be used in this

paper:
Law 13:
(prog1 »p@ proga); progs = (progi; progs) >p© (proge; progs)
Law 24:

(prog1 >pg® prog2) = progi >p® (progi >¢® proge)

We also make use of the following law, which we will call Law A:

proga & progi = progi »p® proga = progi ,@® proge

3.3. Probabilistic B

There are two aspects to the introduction of probabilistic behaviour into a B machine as proposed in
[HJR*03]. The first is to allow operations to be constructed using probabilistic GSL, so probabilistic choices
can be made within operations. The second is to introduce an EXPECTATION clause into a B machine in
order to express requirements on various expectations on the state. An EXPECTATION clause will in general
contain a collection of expectation expressions. This clause plays a role for expectations analogous to the
INVARIANT clause on predicates on the state. The associated proof obligations are that every operation, from
any legitimate state (i.e. any state that meets the invariant), must not decrease any of the expectations.
Each expectation is of the form e = V, meaning that the expected value of V is always at least the
value of e initially. The new proof obligations associated with each such expectation are the following:

P1 Initialisation must establish the lower bound of the invariant. In other words, the expected value of V'
after initialisation, [Init]V, is at least e:

e = [Init]V

P2 Each operation must not decrease the expected value of V. In other words, whatever state the system is
in, the expectation V should not decrease when Op executes:

V = [0p]V

In this paper we will use expectations of the form V. This is an abbreviation for 0 = V. Observe that
this still gives rise to a non-trivial proof obligation P1, that V is non-negative on initialisation.

4. The Tank

The system we aim to model is a tank being filled with a liquid. The liquid flows into the tank through a
pipe. We wish to track the volume of liquid in the tank. This is illustrated in Figure 2
The tank can be modelled using the machine given in Figure 3 3. This describes a model of the real

3 An explanation of the ascii form of pGSL used in Figure 3 and elsewhere in this paper is given in Appendix A

Tank monitoring: a pAMN case study 5

MACHINE Tank
CONSTANTS minflow, maxflow
PROPERTIES minflow : REAL & maxflow : REAL

& minflow > O
& maxflow >= minflow

VARIABLES flow, volume
INVARIANT flow : REAL & volume : REAL
INITIALISATION volume := O || flow :: [minflow,maxflow]
OPERATIONS

tock = flow :: [minflow,maxflow] || volume := volume + flow
END

Fig. 3. The AMN description of the tank system

tank, and will therefore be included in the specifications we will give, so that we can relate the state of the
monitoring system to the real state of the tank.

Here we assume that in one time unit (as represented by tock), the volume of liquid increases by the
value of flow. The value of flow can itself be any value between minflow and mazflow, and can change on
every time step.

An interval of real numbers between [and h is denoted [I, h]. The interval [z + [, z + h] is abbreviated
x + 1, h].

5. A monitoring system
5.1. The first simple system
5.1.1. Specification

We wish to produce a software system that tracks the volume of liquid in the tank to some level of accuracy.
The system we require can be specified using the probabilistic B machine VolumeTrackerl of Figure 4. (The
expectation makes use of values of A and B that will be given later.) For this first example, we take a simple
approach where a single poll operation updates both the tank and the monitoring system state at the same
time. Later in the paper we will consider the separation of system updates from tank updates.

Our first specification, VolumeTrackerl, requires that a state update is perfectly accurate at least 99%
of the time. Otherwise (i.e. up to 1% of the time) it can be completely arbitrary over the range of possible
readings [minflow, mazflow].

The system maintains a single state variable rvolume, which contains the value the system has for the
volume of liquid in the tank. Thus our specification will be concerned with the relationship between rvolume
and the actual volume volume.

It is natural to have two expectations to provide a range on what the expected value for volume can be,
given a particular value for the expected value of rvolume. Because rvolume and volume are increased on each
step with some value from a fixed range of possible values, we consider expectations as linear combinations
of rvolume and volume. Thus they would be of the form:

El: rvolume — A x volume
E2: B x volume — rvolume

These must both be non-negative, so we can deduce for the expected values that
rvolume/B < volume < rvolume/A

Thus given an expected value for rvolume we have a range for the expected value of volume. The required
degree of accuracy as given by A and B will naturally emerge as part of the specification.

Since both E1 and F2 must be greater than 0, and non-decreasing on every occurrence of poll, we obtain
some constraints on the possibilities for A and B.

6 Schneider et al.

MACHINE VolumeTrackeri
INCLUDES Tank

VARIABLES rvolume
INVARIANT rvolume : REAL

& rvolume * (minflow/maxflow) <= volume

& volume <= rvolume * (maxflow / minflow)
EXPECTATION El: rvolume - A * volume,

E2: B * volume - rvolume
INITIALISATION rvolume := O

OPERATIONS
poll = T: tock
|| Via: (rvolume := rvolume+flow
0.99 (+)
Vib: rvolume :: rvolume+[minflow,maxflow])
END

Fig. 4. The VolumeTrackerl machine

Observe that any absolute restrictions on the relationship between volume and rvolume will appear in
the invariant. In particular, the lower and upper bounds on volume for any given value of rvolume are given
by the following inequalities:

rvolume x (minflow/mazflow) < volume < rvolume x (mazflow/minflow)

This will always be true, so it is included in the invariant. However, it does not provide a very tight rela-
tionship between volume and rvolume.

5.1.2. Deriving A and B

For VolumeTrackerl to meet its proof obligations, we require that the expectations will never decrease on
any call of the operation poll, from any state.

We can carry out some calculations to derive conditions for A and B to achieve this. We require that
E1 = [poll|E1 and E2 = [poll] E2. Thus we require that for any flow, volume, and rvolume, we must have
that ([poll]E1) — E1 > 0 and ([poll]E2) — E2 > 0.

We calculate the requirement on A from the requirement on E1:

([poll] E1) — E1 = ([T || (V1a 0990 V1b)]E1) — E1
= ((T[| V1a) 0.00® (T [| V1))]EL) - E1
=(099x [T || V1a]E140.01 x [T || V1b]E1) — E1
= (0.99 x (rvolume + flow — A(volume + flow))

+0.01 x (rvolume + minflow — A(volume + flow)))

—(rvolume — A.volume)

= 0.99 x (flow — A x flow) + 0.01(minflow — A x flow)
= (0.99 — A) x flow 4+ 0.01 x minflow
Since this must be non-negative everywhere (i.e. for all possible values of flow), we obtain that
A <0.99 + 0.01(minflow/ flow)
for any value of flow. The bound takes its minimal value when flow is mazflow, so we obtain that
A < 0.99 + 0.01(minflow/mazflow)

Thus the closer to 1 the ratio between minflow and mazflow, the closer A can be to 1 and the more
accurate the upper bound on the expected value for volume for any given expectation on rvolume. However,
note that A can always be at least 0.99.

For B we perform the following calculation:

([poll] E2) — E2 = ([T || (V1a 0.00 V1b)]E2) — E2

(%)

Tank monitoring: a pAMN case study 7

— (T)] V1a) oso® (T || VIB)]E2) — B2
= (0.99 x [T || V1a]E2+0.01 x [T || V1b]E2) — E2
(%) = (0.99 x (B(volume + flow) — (rvolume + flow))
+0.01 x (B(volume + flow) — (rvolume + mazflow)))
—(B.volume — rvolume)
= 0.99 x (B.flow — flow) 4+ 0.01(B.flow — mazflow)
= B X flow —0.99 x flow — 0.01 x mazflow

We require that this is non-negative for any value of flow. Thus B > 0.99+0.01(mazflow/flow) for any value
of flow. The largest value for the expression (i.e. the largest lower bound for B) is given when flow = minflow,
and we obtain

B > 0.99 + 0.01(mazflow/ minflow)

Observe lines (*) and (**) concerning the evaluation of [T || V'1b] with respect to an expectation. Since
V'1b is nondeterministic in the assignment to rvolume, the minimum expectation over all possible assignments
to rvolume must be taken. In E'1, rvolume is positive, so the smallest possible value of rvolume is used in the
calculation of the pre-expectation of Fl. In E2 rvolume is negative so the largest possible value of rvolume
is used in the calculation of the pre-expectation of F2. This means that however the nondeterminism is later
resolved, the expectation will be at least the value calculated. Expectations should always be non-decreasing,
so demonic nondeterminism always considers the worst case with respect to increases.

5.1.3. Example

As an illustration, we shall consider some concrete numbers: if minflow = 100 and mazflow = 400, then we
obtain A < 0.9925 and B > 10.03. Thus we know that

(100/103) x rvolume < volume < rvolume x (400/397)
This implies for example that
0.97 x rvolume < volume < 10.03 x rvolume

so if we have a requirement for 97% accuracy, this will be met.

However, if our requirement is for 99% accuracy, this will not be met. The description cannot ensure that
0.99 x rvolume < volume. This is because an incorrect reading, that could occur with probability 0.01, could
be wrong by a factor of 4, leading to a large increase of rvolume over the real value of volume. The level of
accuracy is concerned not only with the probability of correct readings, but also with the amount by which
a flawed reading could be out.

To ensure 99% accuracy we would either have to reduce the ratio between minflow and mazflow (so bad
readings cannot be so wildly out), or decrease the probability of a bad reading. Observe that these alterations
are concerned only with the specification machine. This machine gives the probability of an accurate reading
that is required for ensuring the expectations.

5.1.4. Implementation

Our first implementation of VolumeTrackerl will make use of two sensors, which provide readings for the
flow, and also give diagnostic information stating whether they are broken or not. We will firstly consider
sensors which can fail on any particular reading independently of any other reading. We will consider sensors
which have a reliability of at least 90%. We will need to make use of two of these, Sensorla and Sensorlb
to give readings to 99% accuracy. Sensorlb is given in Figure 5, and Sensoral is entirely similar.

We propose an implementation VolumeTracker1l of VolumeTrackerl which uses two sensors in order to
obtain a more reliable reading of the flow. This is given in Figure 6, and makes use of the Context machine
of Figure 7.

Observe that the implementation contains its own variable rvolume. To avoid complicating this example
with imported state, we relax the normal restriction that implementation machines cannot have their own
state.

MACHINE Sensorilb

SEES Tank
OPERATIONS
sf, st <-— polllb =
Sibl: sf := flow || st := ok
>=0.9 (+)
Sibr: sf :: [minflow,maxflow] || st := broken
END

Fig. 5. A Sensor machine

IMPLEMENTATION VolumeTrackerll

REFINES
IMPORTS
VARIABL
INVARIA
INITIAL
OPERATI
poll =

Pla:
Pib:
F:
R:
T:

END

VolumeTrackeril
Tank, Sensorla, Sensorlb, Context
ES rvolume
NT rvolume : REAL
ISATION rvolume := 0
ONS
VAR v1, v2, stl, st2, rflow
IN
vl,stl <-- pollla;
v2,st2 <-- polllb;
rflow <-- flow(vl,stl,v2,st2);
rvolume := rvolume + rflow;
tock
END

Fig. 6. The implementation VolumeTrackerll

Schneider et al.

We need to prove that the poll operation in the implementation is a refinement of the poll operation in
the specification. This can be done by manipulating the probabilistic choices using the laws of [MMO04] given
in Section 3.2.

The poll operation in VolumeTrackerll of Figure 6 is of the form Pla; P1b; F; R; T, where the
variables vl, v2, stl, st2, rflow are all local. We show that this operation is equivalent to poll given in the
specification machine VolumeTrackerl, as follows:

Pla;

Plb; F; R; T

= {expanding Pla and P1b}

MACHINE

OPERATI
ff <-
PRE

THE

END
END

Context
ONS
- flow(vl,stl,v2,st2) =
vl : REAL & v2 : REAL
& stl : STATUS & st2 : STATUS
N
IF stl = broken & st2 = broken THEN ff :: [minflow,maxflow]

ELSIF stl1 = broken & st2 = ok THEN ff := v2
ELSIF stl = ok & st2 = broken THEN ff := vi1
ELSIF stl = ok & st2 = ok THEN ff := (v14+v2)/2

Fig. 7. The AMN description of flow calculation

Tank monitoring: a pAMN case study 9

(Slal »0.90@ Slar);
(S1bl >9.0® Slbr); F; R; T
= {Law 13}
Slal; (S1bl 50.90® Slbr); F; R; T
>0.9D
Slar; (Slbl 20,9@ Slb’f’); F; R; T
= {Law 13}
(Slal; S10l; F; R; T »0.9® Slal; S1br; F; R; T)
>0.9D
(Slar; S1bl; F; R; T 50.9® Slar; Slbr; F; R; T)
= {standard program algebra in each branch; removal of local variables}
(Via|| T z00® V1a| T) 300® (Vla| T z00® V1b| T)
= {idempotence of >, on left-hand argument}
Via | T >0.9P (Vlia | T >09@ V1b I)
= {Law 24}
(Vlia || T >0.99® V1b I)
= {Law A, since V1b C V1a}
(Vla || T 090® V10| T)

Thus we arrive at the operation poll given in the specification machine VolumeTrackerl. This demonstrates
that VolumeTrackerll indeed provides an implementation of VolumeTrackerl.

5.1.5. Summary

This first example has illustrated several points:

e The expected value of the machine expectation expression should be non-decreasing on every occurrence
of the operation.

e However, the actual value of the machine expectation expression can decrease on some operation calls
(provided its expected value does not).

e Expectations can be used to express a relationship between the expected values of state variables, in our
case providing a range for the expected value of volume in terms of the expected value of rvolume. This
is checked as part of machine consistency, and is independent of any particular implementation.

e The accuracy of the approximation rvolume to the tank value volume depends not only on the proba-
bility of an incorrect reading, but also on the ratio between minflow and mazflow, since this affects the
maximum possible error in rvolume.

e Probabilistic operations can be implemented using combinations of probabilistic components (sensors) in
the way we would expect. Such implementations need only be checked for refinement against the machine
descriptions of the operations. The machine consistency checks ensure that the machine operations provide
the overall requirements on the expectations.

5.2. Introducing error margins
5.2.1. Specification

In the previous example, correct readings of flow were exactly accurate. We now allow for a margin of error
in readings of flow. Specifically, the error can be any value in the range [lowerror, higherror]. Typically the
possibility of no error at all should be within the range, so lowerror will be negative and higherror will be
positive. The revised machine is given in Figure 8.

The calculation of appropriate A and B follows the same pattern as shown previously in Section 5.1.2,
and is given in Appendix B. Now two sources of nondeterminism must be taken into account: the reading of

10 Schneider et al.

MACHINE VolumeTracker?2
INCLUDES Tank
CONSTANTS lowerror, higherror
PROPERTIES lowerror : REAL & lowerror <= 0
& higherror : REAL & higherror >= 0
VARIABLES rvolume
INVARIANT rvolume : REAL
EXPECTATION El: rvolume - A * volume,

E2: B * volume - rvolume
INITIALISATION rvolume := 0O

OPERATIONS
poll = T: tock
[l V2a: (rvolume :: rvolume+flow+[lowerror,higherror]
0.99 (+)
V2b: rvolume :: rvolume+[minflow+lowerror,maxflow+higherror])
END

Fig. 8. The AMN description of the second monitoring system

the sensors in V2a (which can be most pessimistic with regard to E1 when flow is low) and the arbitrary
reading in V2b (which can be most pessimistic for E1 when flow is high). This combination of considerations
(recall lowerror is negative, so A < 1) means that A is bounded above by both of the following values:

1 + (lowerror /minflow)
and
0.99 + (lowerror/mazflow) + 0.01(minflow / mazflow)

For example, if minflow = 100, mazflow = 400, and lowerror = —10, then the first value is lower, and
we obtain A = 0.9. On the other hand, if lowerror = —0.1, then the second value is lower and we obtain
A = 0.9915. In the first case the possible error in any reading of the flow is 10% of minflow, so the worst
case occurs when the flow is minflow and minflow + lowerror is added to rvolume: the resulting rvolume
could be 10% out. On the other hand, in the second case the error in the flow can be at most 0.1%, so the
error that can be introduced by V2b (1% of the time) dominates, and the worst case occurs when the flow
is mazflow and rvolume is only incremented by lowerror + minflow.

Similar considerations for the expectation E2 yield that the value obtained for B is the maximum of the
following two values, the first for the case where flow = mazflow and the second when flow = minflow.

1 + (higherror/mazflow)
and
0.99 + (higherror /minflow) + 0.01(mazflow / minflow)

In this case, the second value will always be higher, and hence will give the appropriate value for B, since
mazflow/minflow > 1, and higherror/minflow > higherror/mazflow. This informs us that the worst case
always occurs with a flow of minflow, and an incorrect reading of mazflow + higherror. This is worse than
the worst outcome that can be obtained with a flow of maxzflow, as far as ensuring that E2 does not decrease
is concerned.

5.2.2. Implementation: sensors

The error is likely to have been included in the specification because the sensors introduce some error. We
can include these errors within the sensor descriptions, resulting in a new version of sensor description. For
example, in Sensor2b we will take the error range to be [le2b, he2b]. The resulting sensor is given in Figure 9.

The implementation VolumeTracker2I will be the same as VolumeTracker1l, except that it now import-
ing Sensor2a (with error range [le2a, he2a]) and Sensor2b, instead of the original sensors. It is given for
reference in Figure 17 of Appendix C.

Tank monitoring: a pAMN case study 11

MACHINE Sensor2b

SEES Tank
CONSTANTS le2b, he2b
PROPERTIES le2b : REAL & 1le2b <=0
& he2b : REAL & re2b >= 0
OPERATIONS
sf, st <-- poll2b =
S2bl: sf :: flow+[le2b,he2b] || st := ok
>=0.9 (+)
S2br: sf :: [minflow+le2b,maxflow+he2b] || st := broken
END

Fig. 9. The machine Sensor2b

Observe that in this scenario two sensors working correctly might not agree on their readings. In this
case the context machine specifies that the average of the two readings should be taken.

The machine VolumeTracker2I provides an implementation of poll, provided the following hold: that
[le2a, he2a] C [lowerror, higherror] and [le2b, he2b] C [lowerror, higherror]. In other words, that the error
ranges for each sensor are within those given in VolumeTracker2 for the overall combination. The proof of
this is given in Appendix C.

5.2.3. Summary

This second example illustrates several points:

o We can specify error ranges for readings of flow.

e Such ranges have an impact on the expectations that will be non-decreasing on operations: the nonde-
terminism in the state updates means that the relationship between rvolume and volume will be weaker.

e The particular relationships that can be guaranteed between volume and rvolume depend on the error
ranges of readings and also on the the ratio of mazflow to minflow. Each of these dominates in some
cases.

e The flow readings can be implemented by sensors whose errors are within the specified range.

5.3. Removing sensor diagnostics

We now consider the situation where the sensors do not provide explicit status information. In this case the
only way faulty readings can be identified is by comparison with other readings.

In this example we will work from the sensors to the specification: we will derive the specification that
the combination of sensors delivers.

5.3.1. Implementation: sensor

A sensor without diagnostic information about its status is given in Figure 10. It provides only a flow reading,
without any information about its state.

To be tolerant to one faulty reading, we need three sensors: Sensor3a, Sensor3b, and Sensor3c. By taking
the median value of the three readings we obtain an accurate reading, provided no more than one of them
goes wrong. This suggests the implementation given in Figure 11. We still assume a 90% reliability on the
reading of any individual sensor.

5.8.2. Specification

In fact here VolumeTracker3I is a refinement of the specification VolumeTracker3 given in Figure 12, provided
all of the sensor errors are within the error given in VolumeTracker3, e.g. [le3, he3] C [lowerror, higherror].

12 Schneider et al.

MACHINE Sensor3c

SEES Tank
CONSTANTS le3c, he3c
PROPERTIES le3c : REAL & 1le3c <=0
& he3c : REAL & re3c >= 0
OPERATIONS

sc <-- poll3c =
sc :: flow+[le3c,he3c]
>=0.9 (+)
sc :: [minflow+le3c,maxflow+he3c]

END

Fig. 10. A sensor without diagnostics

IMPLEMENTATION VolumeTrackerI3

REFINES VolumeTracker3

IMPORTS Tank, Sensora3, Sensor3b, Sensor3c
VARIABLES rvolume

INVARIANT rvolume : REAL

INITIALISATION rvolume := 0

OPERATIONS
poll = VAR v1, v2, v3
IN

vl <-- poll3a;
v2 <-- poll3b;
v3 <-- poll3c;

rflow := median(vl,v2,v3);

rvolume := rvolume + rflow;

tock

END
END
Fig. 11. The implementation VolumeTrackerl3
MACHINE VolumeTracker3
INCLUDES Tank
PROPERTIES lowerror : REAL & lowerror <= 0
& higherror : REAL & higherror >= 0

VARIABLES rvolume
INVARIANT rvolume : REAL
EXPECTATION El: rvolume - A * volume,

E2: B * volume - rvolume
INITIALISATION rvolume := 0

OPERATIONS
poll = tock
[l S83a: (rvolume := rvolume+flow+[lowerror,higherror]
0.972 (+)
S3b: rvolume :: rvolume+[minflow+lowerror,maxflow+higherror])
END

Fig. 12. The third monitoring system specification

Tank monitoring: a pAMN case study 13

For VolumeTracker3, carrying out the standard calculations on preservation of F1, we find that the best
(highest) value we can obtain for A, which enables the expectation E1 to be preserved, is the minimum of

1 + (lowerror / minflow)
and
0.972 + 0.028(minflow / maxflow) 4+ lowerror / mazflow
Similarly, the best (lowest) value we can obtain for B is the maximum of
1+ (higherror /mazflow)
and
0.972 + 0.028(mazflow /minflow) + (higherror / minflow)

The second of these will always be the maximum, since mazflow > minflow. The situation is similar to the
previous example considered in Section 5.2.2, but with a probability of an incorrect reading now at 0.028
rather than 0.01. Thus the expectations on the relationship between rvolume and volume are correspondingly
weaker, since more weighting is given to the ratio between mazflow and minflow.

For example, consider the situation where we have mazflow = 400, minflow = 100, higherror = 1,
lowerror = —1.

Since the expectation E1 = rvolume — A X volume must not decrease, whatever the value of flow, we
have two extremes to consider:

e If flow = minflow, then volume is incremented by minflow, and the least that rvolume can be incremented
by is minflow + lowerror. Thus in this case we obtain a possible value of A = 0.99.

o If flow = mazflow, then volume is increased by mazflow, and the least that rvolume can be incremented
by is minflow + lowerror if at least two sensors go wrong (which can happen with probability 0.028),
otherwise maxflow+ lowerror. Thus the most pessimistic expectation gives a possible value of A = 0.9765.
Here the ratio between mazflow and minflow is more significant than the ratio between minflow and
lowerror in contributing to the amount by which rvolume can be down, and we obtain a value of 0.9765
for A.

We also require that the expectation E2 = wvolume — B X rvolume must not decrease. Here we are
concerned with the proportion by which volume can exceed rvolume, and the worst case always occurs when
flow = minflow. In this case, the reading might at worst be mazflow + higherror (with probability 0.028)
and minflow + higherror otherwise. This yields a value for B of at least 10.085 if the expectation of E2 is
not to decrease. This is a margin of error of 8.5%.

5.8.3. Summary

This version of the tank monitoring system has considered a version of sensor which does not provide feedback
on its status. Thus a sensor’s incorrect reading can only be discovered by comparing it with other sensors. We
considered an implementation which uses three sensors in such a way that if at most one has failed then an
accurate reading is obtained. We found that if each sensor has at least 90% reliability, then the combination
has at least 97.2% reliability in terms of providing an accurate reading. This allowed us to construct the
specification that was guaranteed by the implementation. This in turn enables the relationship between the
expected values of volume and rvolume to be established.

6. Separating system updates and tank updates

It could be useful to separate the model of the tank from the model of the system, and not refer to tank
updates in the poll operation at all. Consequently, we could keep this abstract tank update operation
throughout the refinement, and then throw it away once we have all the implementation. This is a small
change from conventional B where we would expect to use all the operations of a machine’s implementation,
but it is appropriate in modelling embedded systems [DT97], and a similar approach also occurs in Event-B
[Abr96b, Abr03]. Here, we want to keep only the operations which model the actual software functionality,

14 Schneider et al.

MACHINE Tank
CONSTANTS minflow, maxflow
PROPERTIES minflow : REAL & maxflow : REAL
& minflow > 0 & maxflow >= minflow

VARIABLES flow, volume, rr
INVARIANT flow : REAL & volume : REAL & rr : NAT
INITIALISATION volume := O || flow :: [minflow, maxflow] || rr := 0

OPERATIONS realPoll =

BEGIN
flow :: [minflow, maxflow] ||
volume := volume + flow ||
rr :=rr + 1

END

END

Fig. 13. The new model of the tank, tracking the number of updates

and discard the model of the environment once it is no longer required. Normally the environment model
is needed only at the abstract level in order to specify a safety property between the approximated value
rvolume of the volume in the tank and the real value volume, as we have seen in the expectations of the
VolumeTracker machines previously.

To achieve this separation, consider two operations, one called realPoll which advances flow and volume,
and approxPoll, which advances rvolume. The latter is the one we will want to implement.

Now it is possible (indeed inevitable) that there will be some states of the system where volume and
rvolume do not match, because realPoll and approxPoll are out of step. Furthermore, any expectation of
the form rvolume — A X volume must decrease on realPoll, since that increases volume but does not change
rvolume. Similarly, an expectation of the form B X volume — rvolume must decrease on approxPoll, since that
increases rvolume while leaving volume unchanged. Thus we require a way of dealing with the separation of
realPoll from approxPoll.

There are in fact a variety of approaches we could take to dealing with this in the specification. In this
section we will explore the introduction of auxiliary variables rr and aa to track the number of times the
realPoll and approxPoll operations have respectively been called, and we will include this information in the
expectations.

6.1. A first attempt

The description of the tank model is given in Figure 13. It incorporates a new variable 77 to track the number
of times realPoll has been called. Observe that flow can change on each occurrence of this operation.

The new monitoring system is given in Figure 14. This includes the model of the tank, and introduces
its own counter aa for tracking the number of calls to approzPoll.

The expectations F1 and E2 that would be appropriate to include will need to take into account the
difference between aa and rr. The general form of such expectations will be as follows:

E1 rvolume — A x volume — (aa — rr) x A’
E2 B x volume — rvolume — (rr — aa) x B’

These expectations must be non-decreasing on every operation. Thus they must both be preserved by both
approzPoll and realPoll. In the case of E1, approzPoll will increase rvolume and aa, so the increase in aa
can be used to offset the increase in rvolume, which in this operation is not matched by a corresponding
increase in volume. Similarly, realPoll will increase volume and rr. Thus the decrease in (aa — rr) will be
used to offset the decrease in rvolume — A X wolume, so that the overall expectation does not decrease.
The appropriate values for A and A’ can be calculated by using the inequalities [approxPoll]E1 = E1 and
[realPoll|E1] = FE1.
A similar form of reasoning applies to £2, and we obtain the following instantiations:

Tank monitoring: a pAMN case study 15

MACHINE VolumeTracker4

INCLUDES Tank

PROMOTES realPoll

VARIABLES rvolume, aa

INVARIANT rvolume : REAL & aa : NAT
EXPECTATION E1, E2

INITIALISATION rvolume := O || aa := 0

OPERATIONS

approxPoll = P1: BEGIN

S4a : (rvolume := rvolume + flow
0.99 (+)
S4b : rvolume :: rvolume + [minflow, maxflow])
[
aa := aa + 1
END

END

Fig. 14. A tank monitoring system separating system from tank updates

E1l rvolume — (minflow/mazflow)volume — (aa — rr)minflow
E2 (mazflow/minflow)volume — rvolume — (rr — aa)mazflow

These expectations do not provide very tight bounds. The difficulty that this calculation has highlighted
is that approxzPoll and realPoll will in general be updating rvolume and volume with different values of
flow. In the most extreme case, realPoll could perform a number of updates with flow = mazflow, and then
approzPoll could perform a number of updates with flow = minflow. In general, if the machines become
more out of step (which is certainly allowed within the specification), then wvolume and rvolume might
be incremented with different values of flow, and so could become quite different. Since flow is updated
nondeterministically on occurrences of realPoll, we must consider the worst case possibility, and this is
so bad that it completely overshadows any probabilistic behaviour that we might hope to describe in the
expectation.

6.1.1. Summary

In this example we have seen how the updates to the monitoring system and to the tank can be separated.
This separation introduces the possibility that the real value volume and the system value rvolume can
diverge quite considerably, for two reasons: firstly, realPoll and approxPoll might not occur together in
general, so one might occur much more than the other; and secondly, realPoll and approzPoll in general
will read different values of flow, and so the updates they effect can be different, even if they are reasonably
closely in step.

The expectations must be non-decreasing for both operations however the nondeterminism is resolved.
The separation of realPoll and approxPoll means that the relationship between the expected values of volume
and rvolume is weakened.

Note that the implementation of the approxPoll operation in terms of sensors will be the same as it
was previously (except that tock will not now be included). A reading of the flow by means of two or three
sensors as in the Section 5 will provide a suitable implementation of the operation exactly as it did before.

6.2. Restricting flow changes

The first approach to separating realPoll from approxPoll yielded a very weak relationship between the
system and the real values for the volume of the liquid in the tank. However, in practice we might have certain
assumptions about the way these operations might be called. For example, we might expect approxPoll to
be called at roughly the same rate as realPoll, and to read the same values for flow. Thus we would not

16 Schneider et al.

MACHINE Tank
SEES Bool_TYPE
CONSTANTS minflow, maxflow
PROPERTIES minflow : REAL & maxflow : REAL
& minflow > 0 & maxflow >= minflow

VARIABLES flow, volume, rr
INVARIANT flow : REAL & volume : REAL & rr : NAT
INITIALISATION volume := O || flow :: [minflow, maxflow] || rr : NAT

OPERATIONS realPoll =

BEGIN
volume := volume + flow ||
rr :=rr + 1
END;
setFlow(ff) =

PRE ff : minflow..maxflow
THEN flow := ff
END

END

Fig. 15. A tank monitoring system separating system from tank updates

expect flow to change between realPoll and the next approzPoll. We can incorporate this into the model
by introducing an explicit operation setFlow which is the only operation that changes the flow; and we can
include an assumption (by means of a precondition) that this only occurs when realPoll and approzPoll are
in step. This builds our environmental assumptions, that realPoll and approzPoll will effectively be in step,
into the model. In fact we allow still allow rvolume and volume to become out of step, but in a controlled
way, as we will see below. The updated version of the tank is given in Figure 15.

One way to incorporate this is to call setFlow from within the monitoring system, under a precondition
so that the flow can be changed only when rvolume and volume are in step. Of course this precondition
involves both the software and the tank system, and incorporates a modelling assumption.

If the flow can be changed while the system is out of step, then a much weaker expectation would result,
in the extreme case corresponding to the expectations derived in Section 6.1 — a rather weaker relationship
between rvolume and volume. Since we are concerned to exclude that, we will include the precondition in
setNewFlow. The resulting machine is given in Figure 16. The expectations in VolumeTracker4a must be
non-decreasing under all three operations. We obtain the following expectations:

El (rvolume — (0.99 + 0.01(minflow/mazflow)) x volume)

+(rr — aa) x ((0.99 + 0.01(minflow/mazflow))flow)
E2 (0.99 + 0.01(mazflow/minflow) x volume — rvolume)

+(aa — rr) x ((0.99 + 0.01(mazflow/minflow)) flow)

Observe that setNewFlow does not change the expectations E'1 and E2, because its precondition states that
r = aa, so the part of the expectation dependent on flow evaluates to 0. Observe also that the extent by
which rvolume and volume are out of step is accounted for by a multiple of flow, which has been constant
since the last time volume and rvolume were properly aligned.

6.2.1. Summary

The first approach to separating realPoll from approzPoll yielded a very weak relationship between the
system and the real values for the volume of the liquid in the tank, because assumptions about the way the
operations would be executed were not built into the model. In this section we built in the assumption that
realPoll and approxPoll were dealing with the same values for flow by controlling more carefully when flow
can be changed. We introduced a new operation setFlow to do this, but only when volume and rvolume

Tank monitoring: a pAMN case study 17

MACHINE VolumeTracker4a

INCLUDES Tank

PROMOTES realPoll

VARIABLES rvolume, aa

INVARIANT rvolume : REAL & aa : NAT
EXPECTATION E1, E2

INITIALISATION rvolume := O || aa := 0
OPERATIONS
approxPoll = P1: BEGIN
S4a : (rvolume := rvolume + flow
p (+)
S4b : rvolume :: rvolume + [minflow, maxflow])
|l
aa := aa + 1
END;
setNewFlow(ff) =

PRE rr = aa & ff : minflow..maxflow
THEN setFlow(ff)
END

END

Fig. 16. The revised tank monitoring system incorporating explicit flow changes

were in step. We then required that the other operations could not alter flow. The expected operation of the
system, whereby realPoll and approxPoll will essentially occur together, is incorporated within this model.
But unexpected operation, in which realPoll and approzPoll occurring together will read completely different
values of flow, is not permitted within this mode of the system.

The result is a much tighter relationship on the expected values of volume and rvolume.

Note that the implementation of the approxzPoll operation in terms of sensors will again be the same as
it was previously. All the changes we have made are at the level of the specification.

7. Discussion

The case study in this paper has shown how probabilistic B can be applied to specify and refine a system
which naturally includes both probabilistic and nondeterministic behaviour, and has highlighted a number
of issues that can arise in this process.

We considered two progressions of scenarios. The first progression was given in Section 5. In the first
scenario, we considered the simple case where sensor readings are either perfectly accurate, or completely
arbitrary, with the sensors indicating whether they are working correctly or not. This enabled a value for the
accuracy of the system’s value rvolume to be given, given in terms of the range of possible flows. Essentially
the accuracy is calculated by allowing for the worst case of nondeterminism, in accordance with the demonic
approach to nondeterminism reflected in the semantics of the language. We obtained the expected result
that the larger the ratio between the maximum and minimum flow, the less accurate the value we could
expect.

In the second scenario, we allowed some error range on the values read even when the sensors were
working correctly. This additional nondeterminism also entered into the calculation to determine the level
of accuracy of rvolume, and again we saw that the wider the range of possibilities, for flow readings, and for
the possible flows, the lower the level of accuracy for the system’s record of the volume of liquid.

In the third scenario, the sensors no longer provided a direct indication of whether they were giving
a correct reading or not, so it was necessary to use three sensors and compare readings to deduce which
values are most likely correct. In this example we worked from the implementation to the specification, firstly

18 Schneider et al.

obtaining the reliability provided by the combination of sensors, and then calculating the level of accuracy
that the system could deliver.

All three of these scenarios were modelled using a machine which had only a single operation, which
synchronised updates of the real tank and updates of the monitoring system.

In the second set of scenarios, we separated the model of the tank from the description of the monitoring
system. This approach is more common in the development of embedded systems [DT97], and also occurs
in Event-B [Abr96b, Abr03], since the separation allows a cleaner development of the system. The fact that
different operations were used to update the states of the tank and of the monitoring system had a significant
impact on the relationship between the expectations of the real volume and the monitoring system’s value for
it. We found that the first approach gave too weak a relationship, essentially no stronger than that provided
by the invariant (which is concerned only with all possible reachable states). The reason for this is that
probabilistic B does not provide any control on the invocation of machine operations, or assumptions on the
order and frequency of their occurrence, so it must allow for the machine to be placed in any environment.
The fact that the flow could change on any update of the tank meant that the system readings and the real
flow values could be wildly different for some sequences of operation calls.

In the second scenario, we introduced behaviour incorporating realistic assumptions: that the flow would
not change while the system updates and tank updates were out of step. We considered this reasonable
because in practice these updates would tend to be in step. This assumption meant that the system readings
for flow corresponded to the real flow into the tank, and we regained a tighter relationship between the
expected values of the measured volume and the real volume of liquid.

We have seen that the requirement that every operation should not decrease the machine’s expectation
introduces a consistency condition between the expectation and the probabilistic and nondeterministic be-
haviour in the machine operations. This need for consistency can be pushed in either direction: either starting
with a required expectation and then deriving the reliability requirements and flow parameters necessary to
achieve that; or starting with a given combination of sensors with some known reliability and obtaining the
tightest possible bounds on the expectation.

8. Further work

Although the case study was of a simple system, this paper has only explored some of the interesting kinds of
behaviour that can arise in such systems, and many other scenarios remain ready to be explored. For example,
we might wish to model sensors that take some time to be repaired once they break. Such modelling would
most likely require some auxiliary variable to track the time left until the sensor is working correctly again,
and the best way of modelling such a system in probabilistic B is far from clear.

Incorporating some information about the interactions between different operations raises some interest-
ing problems. The final scenario we considered is quite relaxed in that it allows the measured volume to
become quite out of step with the real volume. There are other possibilities for modelling such a scenario.
For example, it might be preferable to introduce a stronger model of control flow to ensure that real updates
and system updates occur alternately. This might require the introduction of flags to track which operation
should be performed next, and guards to block operations from executing out of turn.

As an alternative, it may be appropriate to introduce controllers separately for probabilistic B machines,
and combine them in the style of CSP||B [T'S00, TSB03]. Thus CSP processes will describe the permitted
or expected sequences of operations, and could be used to drive the probabilistic B machine. This would
allow some weaker requirements on expectations to be introduced in the context of such control loops: such
expectations might need to be non-decreasing over the body of a control loop, rather than the stronger
requirement that each operation individually should not decrease it. This is a topic for future research.

This work has concentrated on using probability with the abstract machine framework. More recent
research has been investigating the use of probability in Event B [MTAO05]. Event B [Abr96b, Abr03] is a
different framework but again based on the B-Method which allows the specification to introduce more detail
during the refinement steps. The refinement laws related to probability are not as mature as in this standard
B framework and therefore is would be premature to compare the approach adopted in this paper with this
very promising emerging work.

Tank monitoring: a pAMN case study 19

8.1. Ack

nowledgements

We are grateful to Neil Evans, Carroll Morgan, and Annabelle Mclver for comments and discussions on this

work.

This research was initiated during Ken Robinson’s and Thai Son Hoang’s visit to Royal Holloway, Uni-
versity of London, in July 2003, and thanks are due to EPSRC for providing funds under grant GR96859/01

to support this visit.

References

[Abr96a] J-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University Press, 1996.

[Abr96b] J-R. Abrial. Extending B without changing it (for developing distributed systems). In Ist Conference on the
B-Method, 1996.

[Abr03] Abrial. Bf: Towards a synthesis between Z and B. In ZB2003: 3rd International Conference of Z and B Users,
number 2651 in LNCS. Springer, 2003.

[Dij76] E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[DT97] J. Draper and H. Treharne. The refinement of embedded software with the B-Method. In Northern Formal Methods
Workshop. Springer, 1997.

[HJR1T03] T.S. Hoang, Z. Jin, K. Robinson, A. Mclver, and C. Morgan. Probabilistic invariants for probabilistic machines.
In ZB2003: 3rd International Conference of B and Z Users, number 2651 in LNCS. Springer, 2003.

[MMO04] A. Mclver and C. Morgan. Abstraction, Refinement and Proof for Probabilistic Systems. Springer, 2004.

[MMHO03] A. Mclver, C. Morgan, and T.S. Hoang. Probabilistic termination in B. In ZB2003: 3rd International Conference
of B and Z Users, number 2651 in LNCS. Springer, 2003.

[MMS96] C. Morgan, A. Mclver, and K. Seidel. Probabilistic predicate transformers. ACM Transactions on Programming
Languages and Systems, 18(3):325-353, 1996.

[Mor98] C. Morgan. The generalised substitution language extended to probabilistic programs. In B’98: the 2nd Interna-
tional B Conference, number 1393 in LNCS. Springer, 1998.

[MTAO05] C.C. Morgan, Thai Son Hoang, and J-R. Abrial. The challenge of probabilistic event B. In ZB2005: 4th Interna-
tional Conference of Z and B Users, number 3455 in LNCS. Springer, 2005.

[Scho1] S. Schneider. The B-Method: an Introduction. Palgrave, 2001.

[STRTO05] S. Schneider, Thai Son Hoang, K. Robinson, and H. Treharne. Tank monitoring: a pAMN case study. In RE-
FINE’05, ENTCS, 2005.

[TS00] H. Treharne and S. Schneider. How to drive a B machine. In ZB2000: 1st International Conference of Z and B
Users, number 1878 in LNCS. Springer, 2000.

[TSBO03] H. Treharne, S. Schneider, and M. Bramble. Combining specification with composition. In ZB2008: 3rd Interna-

tional Conference of Z and B users, number 2651 in LNCS. Springer, 2003.

A. Machine Readable pGSL

This table gives the ascii form of statements in pGSL, used in the AMN descriptions presented in this paper.
For a fuller account of machine-readable AMN, see [Abr96a, Sch01].

r:=F x:=E

z:€ S x :: S

z,y:=FE F x,y := E,F

pre | prog pre | prog

progi [|proga progl [] prog?2

pre = prog pre ==> prog

skip skip

progr p© proga progl p (+) prog2

progi »p® proga progl >=p (+) prog2
Qy.pred => prog @ y . pred ==> prog

B. Calculation of expectation coefficients in VolumeTracker?2

We calculate the requirement on A from the requirement on E1, as we did for VolumeTrackerl.

([poll] E1) — E1 = ([T || (V2a 0.0 V2b)]E1) — E1

= ([(T'|| V2a) 0.90® (T || V2b))]E1) — E1

20 Schneider et al.

= (0.99 x [T || V2a]E1 +0.01 x [T || V2b]E1) — E1
(¥) = (0.99 x (rvolume + flow + lowerror — A(volume + flow))
+0.01 x (rvolume + minflow + lowerror — A(volume + flow)))
—(rvolume — A x volume)

= 0.99 x (flow + lowerror — A x flow) 4+ 0.01(minflow + lowerror — A x flow)

= (0.99 — A) x flow + 0.01 x minflow + lowerror
Observe in (*) that the minimum expectation for the nondeterministic choice over [lowerror, higherror]
occurs for the value lowerror.

Since ([poll] E1) — E1 must be non-negative for all values of flow, we obtain the requirement on A that,
for all values of flow, we have that

A < 0.99 4 0.01(minflow/flow) + (lowerror/flow)

The expression takes its extreme values at flow = minflow and flow = mazflow, so we can obtain the
constraints on A by considering just these. Instantiating flow with minflow we obtain that

A < 1+ (lowerror /minflow)
and instantiating flow with mazflow we obtain that
A <0.99 4 0.01(minflow/mazflow) + (lowerror /mazflow)

Thus A must be no greater than the minimum of these two values.

For B we perform the following calculation:

([poll] B2) — E2 = ([T || (V2a .00 V2b)]E2) — E2
= ([(T'[l V2a) 0.00® (T || V20))]E2) — E2
= (0.99 x [T || V2a]E2+0.01 x [T || V2b|E2) — E2
= (0.99 x (B(volume + flow) — (rvolume + flow + higherror))

+0.01 x (B(volume + flow) — (rvolume + mazflow + higherror)))
—(B.volume — rvolume)

= B.flow — 0.99flow — 0.01mazflow — higherror

()

We require that this is non-negative for any value of flow. Thus
B > 0.99 + 0.01(mazflow/flow) + (higherror/flow)

for any value of flow. The expression takes its extreme values at flow = minflow and flow = mazflow, so we
can obtain the constraints on A by considering just these. Instantiating flow with minflow we obtain that

B > 0.99 + 0.01(mazflow/minflow) + (higherror /minflow)
Instantiating flow with mazflow we obtain that
B > 1+ (higherror /mazflow)

The first expression is greater than or equal to the second for any values of higherror, mazflow, minflow
where minflow < maxflow. Thus we obtain the condition on B that

B > 0.99 + 0.01(mazflow/minflow) + (higherror /minflow)

C. Verifying the implementation of poll in VolumeTracker2l

The poll operation in VolumeTracker2I is of the form P2a; P2b; F; R; T, where vl,v2, stl, st2, rflow
are all local variables. We show that this operation is equivalent to poll given in the specification machine
VolumeTracker2, as follows:

P2a; P2b; F; R; T

Tank monitoring: a pAMN case study 21

IMPLEMENTATION VolumeTracker2Il

REFINES VolumeTracker?2

IMPORTS Tank, Sensor2a, Sensor2b, Context
VARIABLES rvolume

INVARIANT rvolume : REAL

INITIALISATION rvolume := 0

OPERATIONS
poll = VAR v1, v2, stl, st2, rflow
IN
P2a: vl,stl <-- poll2a;
P2b: v2,st2 <-- poll2b;
F: rflow <-- flow(vl,stl,v2,st2);
R: rvolume := rvolume + rflow;
T: tock
END
END

Fig. 17. The implementation VolumeTracker2I

= {expanding P2a and P2b}
(S2al >0.0® S2ar); (S2bl 50.0® S2br); F; R; T
= {Law 13, twice }
(S2al; S2bl; F; R; T 0.9® S2al; S2br; F; R; T)
>0.9P
(S2ar; S2bl; F; R; T »0.0® S2ar; S2br; F; R; T)
= {standard program algebra in each branch; removal of local variables}
(rvolume :: rvolume + flow + [(le2a + le2b)/2, (he2a + he2b)/2]; T
>0.9® rvolume :: rvolume + flow + [le2a, he2a); T)
>0.9D
(rvolume :: rvolume + flow + [le2b, he2b]; T
>0.9® rvolume :: rvolume + flow + [minflow, mazflow]; T)
& {expanding the ranges of the nondeterministic choices,
provided lowerror < le2a, lowerror < le2b, he2a < higherror, he2b < higherror}
(rvolume :: rvolume + flow + [lowerror, higherror]; T
>0.9® rvolume :: rvolume + flow + [lowerror, higherror]; T)
>0.9P
(rvolume :: rvolume + flow + [lowerror, higherror]; T
>0.0® rvolume :: rvolume + flow + [minflow + lowerror, mazflow + higherror]; T')
= {Laws 13 and 24}
V2a; T 50.00® V2b; T
= {Laws 13 and A, since V2b C V2a; T independent of V2a and V2b }
(V2a || T o00® V2b| T)

Thus we arrive at the operation poll given in the specification machine VolumeTracker2. This demonstrates
that VolumeTracker2I indeed provides an implementation of VolumeTracker2.

