Steganography Models
CSM25 Secure Information Hiding

Dr Hans Georg Schaathun
University of Surrey

Spring 2007

The Steganography System

What steganography is

The data hiding system

Watermarking System

Embedding → Extractor

- What would Kerckhoffs think of this stego-system?
- Security depends on the confidentiality of the algorithm.

Watermarking vs. Steganography

- Watermarking: the cover-image is essential
 - Two receivers:
 - One observes the cover-image
 - One extracts the hidden message
 - Minimum distortion is important
- Steganography: What is the use of cover-image at receiver?
 - Bob wants the message
 - The image is a red herring

Two key differences

Watermarking vs. Steganography

- Cover-image
 - Important in watermarking
 - Meaningless in steganography
- Attacker
 - Steganography: determine whether secret information exists or not
 - Watermarking: various other goals
 - Change cover-text
 - Remove watermark
 - Change watermark
Real Steganography

Mathematical definition

A **Secret-Key stego-system** is \(S = (C, M, K, E, D) \) where

- \(C \): set of cover texts
- \(M \): set of messages
- \(K \): key space (set of possible keys)
- \(E \) is an encoding function, \(E : K \times M \rightarrow C \)
- \(D \) is a decoding function, \(D : K \times C \rightarrow M \)

such that

- \(\Pr(D(k, E(k, m)) = m) \approx 1 \).

Compression

- \(\mathbb{F}^* \) is set of binary strings of arbitrary length

Definition

A compression system is a function \(c : \mathbb{F}^* \rightarrow \mathbb{F}^* \), such that \(E(\text{length}\, \tilde{m}) > E(\text{length}(c(\tilde{m}))) \) when \(\tilde{m} \) is drawn from \(\mathbb{F}^* \).

- The compressed string is expected to be shorter than the original.

Definition

A compression \(c \) is **perfect** if all target strings are used, i.e. if for any \(\tilde{m} \in \mathbb{F}^* \), \(c^{-1}(\tilde{m}) \) is a sensible file (cover-text).

- Decompress a random string, and it makes sense!

Steganography by Perfect Compression

Anderson and Petitcolas 1998

- A perfect compression scheme.
- A secure cipher.

\[\begin{array}{c}
\text{Encryption} \quad \text{Key} \quad \text{Decrypt} \\
\downarrow \quad \downarrow \quad \downarrow \\
C \quad \quad \quad \quad \quad \quad C \\
\downarrow \quad \downarrow \\
\text{Decompress} \quad S \quad \text{Compress} \\
\end{array} \]

- Steganography without data hiding.
Pure Steganography
Mathematical definition

A Pure stego-system is $S = (C, M, E, D)$ where
- C : set of possible cover files, i.e. insuspicous files
- M : set of possible (secret) messages
- E is an encoding function, $E : C \times M \rightarrow C$
- D is a decoding function, $D : C \rightarrow M$

such that
- $P_{C,M}(D(E(c, m)) = m) \approx 1.$

Secret-Key Steganography
Mathematical definition

A Secret-Key stego-system is $S = (C, M, K, E, D)$ where
- C : set of cover texts
- M : set of messages
- K : key space (set of possible keys)
- E is an encoding function, $E : K \times C \times M \rightarrow C$
- D is a decoding function, $D : K \times C \rightarrow M$

such that
- $P_{C,M}(D(k, E(k, c, m)) = m) \approx 1.$

Distortion in Watermarking

- The distortion is the difference between an $N \times M$ cover image X and marked image Y
- Often measured by PSNR

$$\text{PSNR} = 10 \log \left(\frac{(\max_{i,j} X)^2 \cdot N \cdot M}{||X - Y||^2} \right).$$

- High distortion \iff low PSNR
- The higher the distortion, the less usable is Y as replacement for $X.$
- In steganography, X has no value, and Y need not replace it.

To remember

- The cover-text is a red herring in steganography.
- The standard definitions of pure steganography and secret-key steganography apply to a very limited class of steganography based on data hiding.
- Cover-text irrelevant \Rightarrow distortion irrelevant.
 - PSNR used to measure distortion in Watermarking.
Steganalysis: first steps

Classification by question asked

Traditional steganalysis:
- Does this file contain a hidden message?

Extended steganalysis:
- How long is the embedded message?
- What is the contents of the hidden message?
- Which system has been used for the message?
- What is the secret key used for the embedding?

Other attacks:
- Disable the message.

Classification by information available

- Stegogramme (always)
- System and algorithm (always by Kerckhoffs’ principle)
- Known message
- Known covertext
- Chosen message
- Chosen covertext
- Chosen stegogramme

Cryptoanalysis

- Assumptions
 - Known algorithm
- Aims to recover, either
 - Key, or
 - Message

- Scenario classes
 - Ciphertext only
 - Known plaintext
 - Chosen plaintext
 - Chosen ciphertext

Steganalysis classes

- Targeted steganalysis
 - Specialised to detect stegotext from a single system
- Uniclass steganalysis (fully blind)
 - Not related any particular system
- Multiclass steganalysis (quasi-blind)
 - Can identify a range of different systems
Exercise

Classify the χ^2 steganalysis test, with which you have worked, in terms of the different classifications we have discussed.

- Question asked
- Information required
- Steganalysis classes
- Can you think of other classifications?

Blind and targeted

- Targeted steganalysis
 - Taylor-made for a specific stego-system
 - Extremely accurate
 - Completely inflexible
 - Important step in the evaluation of stego-systems
- Blind steganalysis
 - Intended to work against any stego-system
 - Can (potentially) identify the stego-system used
 - Rarely as accurate as targeted techniques

Blind steganalysis

- Blind steganalysis = classification problem
- Common approach is machine learning
 - Define heuristics
 - Train on objects from each class
 - Empirical data \rightarrow choose threshold
 - Threshold used for decision in new cases
- Uniclass steganalysis
 - Cover-image or stegogramme
 - Train on cover-images
- Multiclass steganalysis
 - One class per known stego-system + cover-images
 - Train on cover-images and stegograms

Multiclass steganalysis

- Targeted attacks may be added for extra scrutiny
- Less blind than uniclass categorisation
- More complicated training process
Limitations

- **Sensitive to image type**
 - Cover-images are widely different
 - Photos vs. drawing
 - Scanning vs. digital camera
 - Landscape vs. portrait
 - Computer graphics and cartoons
 - Unknown type of cover-images could hit as stegogramme(!)

- **Targeted blind steganalysis**
 - Uses side information
 - e.g. we know the camera which took the cover-images