The DCT domain and JPEG
CSM25 Secure Information Hiding

Dr Hans Georg Schaathun
University of Surrey
Spring 2008

Learning Objectives

- Be able to work with and JPEG images and other representations in the transform domain.
- Understand what happens during JPEG compression, and its potential consequence to watermarking and steganography.
- Be able to apply simple LSB embedding in the JPEG domain.

Overview

The elements of JPEG

- Operates on luminence and chrominance (YCbCr) (not on RGB)
 - Grayscale images have luminence component only.
- Downsampling
- Works in the DCT domain (not the spatial domain)
- Quantisation
- Entropy coding (lossless compression)

JPEG is not a file format

- JPEG is a compression system
 - The system employs three different compression techniques
- JPEG is not a file format.
- Files with extension .jpeg are often JFIF or EXIF.
 - JFIF is traditionally the most common file format for JPEG.
 - EXIF is made for digital cameras and contain extra meta information.
Overview

Reading

Core Reading

Digital Image Processing Using MATLAB.

- Chapter 6: colour images
 - Representation
 - Processing
 - Conversion
- Chapter 8.5: JPEG compression
- Chapter 4: Frequency domain processing

The RGB colour representations

- RGB: A colour is a vector \((R, G, B)\)
 - \(R\) is amount of red light.
 - \(G\) is amount of green light.
 - \(B\) is amount of blue light.
- Each pixel can be either
 - A colour vector \((R, G, B)\); or
 - a reference to an array of colour vectors (the palette)
- Each coefficient can be
 - \(\in [0, 1]\); floating point (double in MATLAB)
 - \(\in \{0, 1, \ldots, 255\}\); 8-bit integer (uint8 in MATLAB)
 - \(\in \{0, 1, \ldots, 2^{16} - 1\}\); 16-bit integer (uint16 in MATLAB)

Image Representation

Alternatives to RGB

NTSC: \((Y, I, Q)\)

\[
\begin{bmatrix}
Y \\
I \\
Q
\end{bmatrix} =
\begin{bmatrix}
0.299 & 0.587 & 0.114 \\
0.596 & -0.274 & -0.322 \\
0.211 & -0.523 & 0.312
\end{bmatrix}
\begin{bmatrix}
R \\
G \\
B
\end{bmatrix}
\]

where \(R, G, B \in [0, 1]\).

YCbCr: \((Y, Cb, Cr)\)

\[
\begin{bmatrix}
Y \\
Cb \\
Cr
\end{bmatrix} =
\begin{bmatrix}
16 \\
128 \\
128
\end{bmatrix} +
\begin{bmatrix}
65.481 & 128.553 & 24.966 \\
-37.797 & -74.203 & 112.000 \\
112.000 & -93.786 & -18.214
\end{bmatrix}
\begin{bmatrix}
R \\
G \\
B
\end{bmatrix}
\]

where \(R, G, B \in [0, 1]\) and \(Y, Cb, Cr \in [0, 255]\).

Block-wise

- Each colour-channel (Y,Cb,Cr) considered separately
- \(M \times N\) matrix divided into 8 \(
\times 8\) blocks
- Each block is handled separately
The DCT transform

- Several different DCT transform.
- We use the following.

\[T_f(u, v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) \sqrt{\frac{\alpha(u)\alpha(v)}{MN}} \cos \left(\frac{2x + 1}{2M} \pi u \right) \cos \left(\frac{2y + 1}{2N} \pi v \right) \]

where

\[\alpha(a) = \begin{cases}
1, & \text{if } a = 0, \\
2, & \text{otherwise.}
\end{cases} \]

\[M = N = 8, \]

Matlab

- Matlab functions
 - dct2 (2D DCT transform)
 - idct2 (Inverse)
 - blkproc (X, [M N], FUN)
- For instance
 - blkproc (X, [8 8], @dct2)
- Use help system for details
- Unfortunately, we do not have the JPEG toolbox.
 - Loading JPEG images converts them to the spatial domain.

The DCT transform

- The inverse is similar

\[f(x, y) = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} T_f(u, v) \sqrt{\frac{\alpha(u)\alpha(v)}{MN}} \cos \left(\frac{2x + 1}{2M} \pi u \right) \cos \left(\frac{2y + 1}{2N} \pi v \right) \]

where

\[\alpha(a) = \begin{cases}
1, & \text{if } a = 0, \\
2, & \text{otherwise.}
\end{cases} \]

\[M = N = 8, \]

Transform image

- Linear combination of patterns (see right)
- DC (upper left) gives average colour intensity
- Low frequency: coarse structure
- High frequency: fine details
What is sampling?

Fact

The human eye is more sensitive to changes in luminance than in chrominance.

- To sample is to collect measurements.
 - Each pixel is a sample (measuring the colour of the image).
 - Lower resolution means fewer samples.
- Reducing resolution = downsampling
- Basic $M \times N$ image: $N \cdot M$ samples per component (Y, Cb, Cr).
- Y is more useful than Cb and Cr.
- Therefore we can downsample Cb and Cr
 - $M/2 \times N/2$ is common for Cb and Cr
 - Still use $M \times M$ for Y

What do we save?

- Original: $M \times N$ pixels \times 3 components.
- Compressed:
 $$2 \times \frac{M}{2} \times \frac{N}{2} + M \times N = \frac{1}{2}M \times N$$
- Ratio
 $$\frac{\text{Compressed}}{\text{Original}} = \frac{\frac{1}{2}MN}{3MN} = \frac{1}{2}$$
- We just saved 50%

Chrominance versus Luminence

Fact

The human eye is more sensitive to changes in luminance than in chrominance.

- Watermarking tend to embed in Y (luminence)
- Embedding in Cb and Cr would more easily be destroyed by JPEG

Downsampling in JPEG

- Translation to YCbCr.
- Downsampling
- DCT transform
- Each downsampling component matrix Y, Cb, Cr is
 - Divided into 8×8 blocks
 - DCT transformed blockwise
- An 8×8 block in Cb can be associated with 1, 2 or 4 Y blocks depending on downsampling.
What is quantisation?

Rounding in general

- Rounding numbers is quantisation.
- Measuring gives **continuous numbers**
 - Whether you measure pixel luminence, or the length of your garage.
 - No matter how close to points are, there is a point in between.
- However, our precision is limited.
 - We give lengths to the nearest unit.
 - Luminence is categorised into 256 intervals (8bit integers).
- Computer memory is **finite**, 256 different possibilities for a byte.

Quantisation in JPEG

- Quantisation in the DCT domain
 - Each coefficient is divided by the quantisation constant.
 - The result is rounded to nearest integer.
 - Different quantisation constants for each coefficient in the block.

Example

Quantisation in JPEG

<table>
<thead>
<tr>
<th>DCT matrix</th>
<th>Quantisation matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>[-415\ -30\ -61\ 27\ 56\ -20\ -2\ 0]</td>
<td>[16\ 11\ 10\ 16\ 24\ 40\ 51\ 61]</td>
</tr>
<tr>
<td>[-47\ 7\ 77\ -25\ -29\ 10\ 5\ -6]</td>
<td>[12\ 12\ 14\ 19\ 26\ 26\ 58\ 60]</td>
</tr>
<tr>
<td>[-49\ 12\ 34\ -15\ -10\ 6\ 2\ 2]</td>
<td>[14\ 13\ 16\ 24\ 40\ 57\ 69\ 56]</td>
</tr>
<tr>
<td>[-12\ -7\ -13\ -4\ -2\ 2\ -3\ 3]</td>
<td>[14\ 17\ 22\ 29\ 51\ 87\ 80\ 62]</td>
</tr>
<tr>
<td>[-8\ 3\ 2\ -6\ -2\ 1\ 4\ 2]</td>
<td>[18\ 22\ 37\ 56\ 68\ 109\ 103\ 77]</td>
</tr>
<tr>
<td>[-1\ 0\ 0\ -2\ -1\ -3\ 4\ -1]</td>
<td>[24\ 35\ 55\ 64\ 81\ 104\ 113\ 92]</td>
</tr>
<tr>
<td>[0\ 0\ -1\ -4\ -1\ 0\ 1\ 2]</td>
<td>[49\ 64\ 79\ 87\ 103\ 121\ 120\ 101]</td>
</tr>
</tbody>
</table>

Quantised DCT matrix

<table>
<thead>
<tr>
<th>Quantised DCT matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>[-26\ -3\ -6\ 2\ 2\ -1\ 0\ 0]</td>
</tr>
<tr>
<td>[0\ -2\ -4\ 1\ 1\ 0\ 0\ 0]</td>
</tr>
<tr>
<td>[-3\ 1\ 5\ -1\ -1\ 0\ 0\ 0]</td>
</tr>
<tr>
<td>[-4\ 1\ 2\ -1\ 0\ 0\ 0\ 0]</td>
</tr>
<tr>
<td>[1\ 0\ 0\ 0\ 0\ 0\ 0\ 0]</td>
</tr>
<tr>
<td>[0\ 0\ 0\ 0\ 0\ 0\ 0\ 0]</td>
</tr>
<tr>
<td>[0\ 0\ 0\ 0\ 0\ 0\ 0\ 0]</td>
</tr>
</tbody>
</table>

Example from Wikipedia.

Entropy Coding

- Recall
  ```
  \[-26\ -3\ -6\ 2\ 2\ -1\ 0\ 0\] 
  \[0\ -2\ -4\ 1\ 1\ 0\ 0\ 0\] 
  \[-3\ 1\ 5\ -1\ -1\ 0\ 0\ 0\] 
  \[-4\ 1\ 2\ -1\ 0\ 0\ 0\ 0\] 
  \[1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\] 
  \[0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\] 
  \[0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\]
  ```

- Observe
 - 0 is extremely common
 - ±1 is common
 - Two-digit numbers are very rare

- This is typical
Entropy Coding

- In order to compress the data
 - Use few bits (short codewords) for frequent symbols
 - Many bits (long codewords) only for rare symbols
- Usually, JPEG uses a simple Huffman code.
 - It can use other codes (saving space, but computationally costly)
- For instance, a single short codeword to say
 - ‘the rest of the block is zero’

Before or after compression

Steganography in JPEG

- Fragility of LSB
 - LSB embedding is criticised for being fragile
 - JPEG removes insignificant information
 - ... such as the LSB
 - JPEG compression after embedding (probably) ruins the message
 - When is this a problem?

- It is a problem in robust watermarking
 - JPEG compression is common-place
 - Most applications need robustness
- If the purpose is steganography,
 - And Alice and Bob are allowed to exchange pixmaps,
 - Then it is not a problem.
- Obviously, if your steganogram is supposed to be JPEG
 - ... Do not do LSB in the pixmap.
Double compression

- Common bug in existing software
- Read an arbitrary image file
 - JPEG is decompressed on reading
 - ... → pixmap
- Embedding works on JPEG
 - image is compressed to produce JPEG signal
 - quality factor (QF) either default or supplied by user
- A JPEG steganogram has now been compressed twice
 - different QF produces an artifact
- Is there any reason for de- and recompressing?

Important lessons

- Do not make unnecessary image conversions.
- Many techniques apply to any format
 - LSB applies to JPEG signals
 - ... but it is called Jsteg
- Use a technique which fits the target (stego-) format
 - i.e. the format you are allowed to use on the channel.

Main development

The past at a glance

Core Reading

- JSteg was published
- JSteg was broken
- OutGuess was published
- OutGuess was broken
- F5 was published
- F5 was broken
Pseudocode

The JSteg algorithm

Input: Image I, Message \vec{m}

Output: Image J

for each bit b of \vec{m}

- $c :=$ next DCT coefficient from I
- while $c = 0$ or $c = 1$,
 - $c :=$ next DCT coefficient from I
- end while
- $c := c \mod 2 + b$
- replace coefficient in I by c

end for

- May ignore high and/or low frequency coefficients

Pros and Cons

- **Why is JSteg important?**
 - First publicly available solution.
 - Simple solution

- **What are the disadvantages?**
 - Similar to LSB in Spatial domain.
 - Histogramme analysis applies
 - χ^2/pairs of values applies

Outguess 0.1

- How can we improve JSteg?
- How did we improve LSB in the Spatial Domain?

Solution

Choose random coefficients from the entire image.
Pseudocode

Outguess 0.1

Input: Image \(I \), Message \(\vec{m} \), Key \(k \)

Output: Image \(J \)

Seed PRNG with \(k \)

for each bit \(b \) of \(\vec{m} \)

\[c := \text{pseudo-random DCT coefficient from } I \]

while \(c = 0 \) or \(c = 1 \),

\[c := \text{pseudo-random DCT coefficient from } I \]

end while

\[c := c \mod 2 + b \]

replace coefficient in \(I \) by \(c \)

end for

* May ignore high and/or low frequency coefficients

Histogramme analysis

- Pairs of values
 - Generalised \(\chi^2 \) works

- Symmetry
 - Embedding exchange \(+2 \leftrightarrow +3 \) and \(-2 \leftrightarrow -1 \).
 - The DCT histogramme is expected to be symmetric
 - Outguess/JSteg destroy the symmetry.

Symmetry analysis

\[
J_{2i} = \left(1 - \frac{q}{2}\right)I_{2i} + \frac{q}{2}I_{2i+1},
\]

\[
J_{2i+1} = \frac{q}{2}I_{2i} + \left(1 - \frac{q}{2}\right)I_{2i+1}
\]

Writing

\[a = \frac{1 - q/2}{1 - q} \quad \text{and} \quad b = \frac{q/2}{1 - q}, \]

we get

\[I_{2i} = aJ_{2i} - bJ_{2i+1}, \]

\[I_{2i+1} = -bJ_{2i} + aJ_{2i+1}. \]

In other words

\[
\sum_{i>0} I_{2i} = \sum_{i<0} I_{2i}, \quad \text{and} \quad \sum_{i>0} l_{2i+1} = \sum_{i<0} l_{2i+1}.
\]

- Substitute for \(l_{2i} \) and \(J_{2i+1} \)
- One equation in one unknown : \(q \)
Exercise
Symmetry analysis

\[\sum_{i>0} l_{2i} + \sum_{i<0} l_{2i+1} = \sum_{i<0} l_{2i} + \sum_{i>0} l_{2i+1}. \]

- Substitute for \(l_{2i} \) and \(l_{2i+1} \)
 - get equation in \(J_{2i} \) and \(J_{2i+1} \).
- Solve for \(J_1 \), write as equation in
 - \(J_1 \) (left hand side)
 - \(\Delta_i = J_{2i} - J_{2i+1} \) (\(i > 0 \)), and \(\Delta_i = J_{2i+1} - J_{2i} \) (\(i < 0 \)).
- Solve for \(q \)
- Can you implement the resulting expression for \(p \) in Matlab?

Improvements at a glance

- F3 – F4 changes the embedding
 - better histogramme – maintain symmetry
- Statistics-aware embedding
 - Outguess 0.2 uses unused capacity
 - dummy changes are used to even out the statistics
- Matrix coding/wet paper coding
 - F5 minimises distortion using coding theory
 - fewer bit-flips per message bit
 - techniques from coding for restricted memory

The problem of F3

- Reembedding
 - Zero created by message zeroes
 - Zeros are reembedded
 - Extra zeros embedded \(\Rightarrow \) overweight of even coefficients.

Bitflips in F3

- Avoid pairs of values.
- Always decrease absolute value when changing
- Zeros are ignored.
- Zero created: reembed in new coefficient

Typical JPEG.

Typical F3.
F4 : evening out even values

- Swap interpretation for negative coefficients
- +1 causes reembedding of zero
- -1 causes reembedding of one

<table>
<thead>
<tr>
<th>Cover</th>
<th>-5</th>
<th>-4</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>+1</th>
<th>+2</th>
<th>+3</th>
<th>+4</th>
<th>+5</th>
</tr>
</thead>
<tbody>
<tr>
<td>F3</td>
<td>-5</td>
<td>-4</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>+1</td>
<td>+2</td>
<td>+3</td>
<td>+4</td>
<td>+5</td>
</tr>
<tr>
<td>Stego</td>
<td>-5</td>
<td>-4</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>+1</td>
<td>+2</td>
<td>+3</td>
<td>+4</td>
<td>+5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cover</th>
<th>-5</th>
<th>-4</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>+1</th>
<th>+2</th>
<th>+3</th>
<th>+4</th>
<th>+5</th>
</tr>
</thead>
<tbody>
<tr>
<td>F4</td>
<td>-5</td>
<td>-4</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>+1</td>
<td>+2</td>
<td>+3</td>
<td>+4</td>
<td>+5</td>
</tr>
<tr>
<td>Stego</td>
<td>-5</td>
<td>-4</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>+1</td>
<td>+2</td>
<td>+3</td>
<td>+4</td>
<td>+5</td>
</tr>
</tbody>
</table>

F4 histogramme

- What does the histogramme look like after F4 embedding?
- Coefficients have generally been decreased.
- Effect similar to reduced quality factor.
- F4 (and F5) can be broken

Suggested Reading

Example

Matrix embedding

- \(n = 3 \) coefficients (LSB): \(x_1, x_2, x_3 \)
- \(k = 2 \) message bits: \(m_1, m_2 \)

Decoder
- \(\hat{m}_1 = x_1 \oplus x_3 \)
- \(\hat{m}_2 = x_2 \oplus x_3 \)

Encoder
- \(m_1 = x_1 \oplus x_3 \) and \(m_2 = x_2 \oplus x_3 \) : no change
- \(m_1 \neq x_1 \oplus x_3 \) and \(m_2 = x_2 \oplus x_3 \) : change \(x_1 \)
- \(m_1 = x_1 \oplus x_3 \) and \(m_2 \neq x_2 \oplus x_3 \) : change \(x_2 \)
- \(m_1 \neq x_1 \oplus x_3 \) and \(m_2 \neq x_2 \oplus x_3 \) : change \(x_3 \)

Average number of changes: \(3/4 \) per two bits
- Compare to F4 (and others): 1 per two bits
Matrix coding

- Longer codewords (larger n) saves more
- e.g. $k = 9$; $n = 511$: change $\approx 1/9$ pixels per message bit
- Matrix embedding based on coding theory
- We will return to coding theory and matrix coding later

Statistics-aware embedding

- Modify unused coefficients
 - Mimick original statistic
 - Tune for every statistic used in known analysis techniques
- OutGuess 0.2
 - Embedding as OutGuess 0.1.
 - Modify selected unused coefficients to correct histogram

Combinations

- Statistics-aware Matrix Coding
 - More advanced code allows a choice of coefficient to modify
 - Use choice to mimick original statistical distribution
- Known as Wet Paper Codes
 - Based on Dirty Paper Codes by Costa 1983.

JPEG Toolbox

Reading a JPEG image

```matlab
im = jpeg_read ( 'Kerckhoffs.jpg' )
im =
  image_width: 180
  image_height: 247
  image_components: 3
  image_color_space: 2
  jpeg_components: 3
  jpeg_color_space: 3
  comments: {}
  coef_arrays: {[248x184 double] [128x96 double] [128x96 double]}
  quant_tables: {[8x8 double] [8x8 double]}
  ac_huff_tables: [1x2 struct]
  dc_huff_tables: [1x2 struct]
  optimize_coding: 0
  comp_info: [1x3 struct]
  progressive_mode: 0
```
The JPEG toolbox

JPEG data

» Xy = im.coef_arrays{im.comp_info(1).component_id};
» whos Xy
Name Size Bytes Class Attributes
Xy 248x184 365056 double

» Q = im.quant_tables{im.comp_info(1).quant_tbl_no}
Q =

 6 4 4 6 10 16 20 24
 5 5 6 8 10 23 24 22
 6 5 6 10 16 23 28 22
 6 7 9 12 20 35 32 25
 7 9 15 22 27 44 41 31
 10 14 22 26 32 42 45 37
 20 26 31 35 41 48 48 40
 29 37 38 39 45 40 41 40

Dr Hans Georg Schaathun
The DCT domain and JPEG
Spring 2008 60 / 62

The JPEG toolbox

w/o the toolbox

Load/Save workspace

• jpeg_read and jpeg_write are compiled functions,
 • Non-trivial to install
• In the exercises, can load presaved workspaces
 » load ‘image.mat’
 » whos
Name Size Bytes Class Attributes
im 1x1 575836 struct

• There is one mat-file for each image on the web page

Other toolbox functions

• I recommend that you use the other toolbox functions
 • bdct, ibdct, quantize, dequantize
• These are m-files, which can be copied into current directory.
• Alternatively, use matlab on tweek which has the toolbox.